File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Numerical solution of cracked thin plates subjected to bending, twisting and shear loads

TitleNumerical solution of cracked thin plates subjected to bending, twisting and shear loads
Authors
KeywordsCrack
Eigenfunction expansion
Finite element
Fractal
Kirchhoff's theory
Stress intensity factors
Thin plate
Issue Date2002
PublisherSpringer Verlag Dordrecht. The Journal's web site is located at http://springerlink.metapress.com/openurl.asp?genre=journal&issn=0376-9429
Citation
International Journal Of Fracture, 2002, v. 117 n. 4, p. 323-335 How to Cite?
AbstractA semi-analytical method namely fractal finite element method is presented for the determination of mode I and mode II moment intensity factors for thin plate with crack using Kirchhoff's theory. Using the concept of fractal geometry, infinite many of finite elements is generated virtually around the crack border. Based on the analytical global displacement function, numerous degrees of freedom (DOF) are transformed to a small set of generalised coordinates in an expeditious way. The stress intensity factors can be obtained directly from the generalized coordinates. No post-processing and special finite elements are required to develop for extracting the stress intensity factors. Examples of cracked plate subjected to bending, twisting and shear loads are given to illustrate the accuracy and efficiency of the present method. The influence of finite boundaries on the calculation of the moment intensity factors is studied in details. Very accuracy results when compare with the theoretical and numerical counterparts are found.
Persistent Identifierhttp://hdl.handle.net/10722/48535
ISSN
2015 Impact Factor: 1.642
2015 SCImago Journal Rankings: 1.093
ISI Accession Number ID
References
Grants

 

DC FieldValueLanguage
dc.contributor.authorSu, RKLen_HK
dc.contributor.authorSun, HYen_HK
dc.date.accessioned2008-05-22T04:16:31Z-
dc.date.available2008-05-22T04:16:31Z-
dc.date.issued2002en_HK
dc.identifier.citationInternational Journal Of Fracture, 2002, v. 117 n. 4, p. 323-335en_HK
dc.identifier.issn0376-9429en_HK
dc.identifier.urihttp://hdl.handle.net/10722/48535-
dc.description.abstractA semi-analytical method namely fractal finite element method is presented for the determination of mode I and mode II moment intensity factors for thin plate with crack using Kirchhoff's theory. Using the concept of fractal geometry, infinite many of finite elements is generated virtually around the crack border. Based on the analytical global displacement function, numerous degrees of freedom (DOF) are transformed to a small set of generalised coordinates in an expeditious way. The stress intensity factors can be obtained directly from the generalized coordinates. No post-processing and special finite elements are required to develop for extracting the stress intensity factors. Examples of cracked plate subjected to bending, twisting and shear loads are given to illustrate the accuracy and efficiency of the present method. The influence of finite boundaries on the calculation of the moment intensity factors is studied in details. Very accuracy results when compare with the theoretical and numerical counterparts are found.en_HK
dc.format.extent217403 bytes-
dc.format.extent40905 bytes-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/pdf-
dc.languageengen_HK
dc.languagefreen_HK
dc.languagegeren_HK
dc.publisherSpringer Verlag Dordrecht. The Journal's web site is located at http://springerlink.metapress.com/openurl.asp?genre=journal&issn=0376-9429en_HK
dc.relation.ispartofInternational Journal of Fractureen_HK
dc.rightsThe original publication is available at www.springerlink.comen_HK
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License-
dc.subjectCracken_HK
dc.subjectEigenfunction expansionen_HK
dc.subjectFinite elementen_HK
dc.subjectFractalen_HK
dc.subjectKirchhoff's theoryen_HK
dc.subjectStress intensity factorsen_HK
dc.subjectThin plateen_HK
dc.titleNumerical solution of cracked thin plates subjected to bending, twisting and shear loadsen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0376-9429&volume=117&issue=4&spage=323&epage=335&date=2002&atitle=Numerical+solution+of+cracked+thin+plates+subjected+to+bending,+twisting+and+shear+loads+en_HK
dc.identifier.emailSu, RKL:klsu@hkucc.hku.hken_HK
dc.identifier.authoritySu, RKL=rp00072en_HK
dc.description.naturepostprinten_HK
dc.identifier.doi10.1023/A:1022276618710en_HK
dc.identifier.scopuseid_2-s2.0-0036822247en_HK
dc.identifier.hkuros75927-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-0036822247&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume117en_HK
dc.identifier.issue4en_HK
dc.identifier.spage323en_HK
dc.identifier.epage335en_HK
dc.identifier.isiWOS:000181424200003-
dc.publisher.placeNetherlandsen_HK
dc.relation.projectInteraction of multiple branched cracks-
dc.identifier.scopusauthoridSu, RKL=7102627096en_HK
dc.identifier.scopusauthoridSun, HY=10144742900en_HK
dc.identifier.citeulike10714853-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats