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Abstract

A semi-analytical method namely fractal finite element method is presented for the
determination of mode I and mode II moment intensity factors for thin plate with crack using
Kirchhoff’s theory. Using the concept of fractal geometry, infinite many of finite elements is
generated virtually around the crack border. Based on the analytical global displacement
function, numerous degrees of freedom (DOF) are transformed to a small set of generalised
coordinates in an expeditious way. The stress intensity factors can be obtained directly from
the generalized coordinates. No post-processing and special finite elements are required to
develop for extracting the stress intensity factors. Examples of cracked plate subjected to
bending, twisting and shear loads are given to illustrate the accuracy and efficiency of the
present method. The influence of finite boundaries on the calculation of the moment intensity
factors is studied in details. Very accuracy results when compare with the theoretical and

numerical counterparts are found.
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1. Introduction

Theoretical analysis of bending problems of cracked plates under the framework of classical
plate theory has been examined in the past, although less extensively than the case of
stretching. Such analysis was first carried out using the complex variable technique by
Williams (1961). He obtained the general stress distribution in the vicinity of the crack tip for
plates loaded in bending, and found that the stress was proportional to the inverse of the
square root of the radial distance from the crack tip. Sih et al. (1962) used Williams’ results to
define symmetric and anti-symmetric stress intensity factors for cracked infinite plate
problems involving bending loads. Furthermore, they analytically solved an infinite plate with
crack subjected to bending, twisting and shear loads. Those solutions were incorporated in the
stress intensity factor handbook by Murakami (1987). However, Zehnder and Hui (1994)
reconsidered those problems and found some errors in the solutions of cracks subjected to

shearing and twisting loads. By using the conformal mapping method, the stress intensity
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factors for the uniform far-field shearing problem were found to be &, = and
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found to be singular, thus k; and k; are both equal to zero. The numerical solutions by Hui and

. In the case of pure twisting, none of the stresses closed to crack tip were

Zehnder (1993) and Zucchini et a/.(2000) also concurred with Zehnder’s solutions.

To deal with more realistic problems with complicated boundary conditions for plates with
cracks, numerical approaches appear to be imperative. Wilson and Thompson (1971) first
calculated the symmetric bending stress intensity factor by means of crack tip deflections for
a finite rectangular plate containing a centre crack, subjected to pure cylindrical bending by
conventional finite element method. Ahmad and Loo (1979) developed a singular crack tip
plate element and solved the problem of plate containing inclined central crack subjected to
bending load. It is noted that the calculated stress intensity factors for both k; and k, were
closely agreed with Sih’s solution despite that errors in the &, solutions were found later by
Zehnder and Hui (1994). Chen and Chen (1984) employed the hybrid-displacement finite
element procedure using the singular elements embedded with crack-tip singularity to solve
various boundary configurations of thin cracked plates under bending. However, anti-
symmetric bending stress intensity factor k&, was found not to be zero regardless the pure

symmetrical problem of square center-cracked plate subjected to edge bending moment. Park



and Atluri (1999), Chen and Shen (1993) and Chen et al. (1992) used the finite element
alternating approach to solve the problems of plates with single and multiple cracks. Only
Chen and Shen actually considered the mixed mode plate bending problem by using the anti-
symmetric bending stress intensity factor derived from Sih ef al. (1962). However, their
results were found to be concurred with these of Sih but inconsistent with Zehnder’s

solutions.

According to these surveys, most of the researcher can accurately predict the symmetric
moment intensity factor but not the anti-symmetric moment intensity factor. The investigation
of a reliable and accurate numerical method to solve thin plate with mixed mode crack by
numerical method is imperative. It is our attention to extend the fractal finite element method
(FFEM) [Leung and Su, 1996] to solve thin cracked plate subjected to bending, twisting and
shear loads. The FFEM combines the advantages of the finite element method and the
efficiency of the fractal transformation technique to model the regular and singular behavior
of cracked plates. To demonstrate the accuracy and reliability of this technique for both mode
I and mode II problems, numerical examples concerning thin plates, with single crack,
subjected to bending, shear and twisting are analyzed. The influence of finite boundaries on

the computation of moment intensity factors is studied in detail.

2. Global interpolation function

In the absence of the transverse loading, Timoshenko and Woinowsky-Krieger (1959) derived

the appropriate differential equation controlling the deflection w= w(r, 6) of thin plate as
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o 10 1 0°
_2+__ _2892

or ror r

where V? =

is the Laplacian. The moments M,, M, and M,, and

shears O, and Oy can be related with the deflection w as follows
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in which D:m is the flexural rigidity, £ is the Young’s modulus and v is the

Poisson’s ratio. Assuming the traction-free boundary conditions at the crack faces, one has the

boundary conditions,
M,=0,=0 for O==r. (7)
It has been shown by Williams (1961) that the desired characteristic solutions are of the form
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where a(()3), a'” andb' (i =1 and 2) are the arbitrary constants. The relations between the

constants are found by substituting equation (8) into (7) to yield
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By neglecting the shear deformation, one has the rotational displacements
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Substituting equations (9) and (10) into (8) and then into (11), one has the displacement

distribution in the vicinity of the end of crack
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Furthermore, the displacement distribution (yq, ¥, ,w) in the rectangular coordinate system as

shown in Figure 1 is given by the transformation,

J 7 l I_cosH —siné O—U v, l
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Equation (15) represents a generalized displacement distribution in the vicinity of a crack tip.

It will be used as the global interpolating function for the displacement field near the crack

tip.

Using the definitions of bending stress intensity factors for cracked plate by Sih et al. (1962),

the moment intensity factors K; and K, are defined as follows,

K, = lim+2r My, (r,0)
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Those factors can be obtained by substituting equation (14) into equations (3) and (6) and
putting /=0and » —> 0, i.e.,
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Therefore, the evaluation of moment intensity factors is directly reduced to the determination

) (2)

of the two coefficients a; ’ and a,~’. No post-analysis and extrapolation are needed.

3. DKT plate elements with similar shape

The properties of plate bending elements with similar shapes as shown in Figure 2 will be
explored here. A triangular 9 DOF element, namely a discrete Kirchhoff theory (DKT)
element by Stricklin et al. (1969) is chosen for the subsequent fractal transformation.

Considering two elements, denoted by / and k, having similar shapes of length ratio

L, /L =&%" where 0< £ <1, the stiffness matrices for the element k can be expressed as,

k k k
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Any sub-matrix in K may be related to that of K' [Leung and Su, 1996] as follows:
il 1 1 1
wiv Wi, E(k—l) ww
Kk k! k! LI (i=j=1273) (19)
ij A% A2 FG=D Ty | =J =55
1 1 1 1 1 1
HE Ky, gD Ky, F 20D Ky

Equation (19) can be used to calculate stiffness coefficients of any DKT element with

geometric similarity.

4. Fractal transformation method



The FFEM is based on the separation of the singular domain and the regular domain from a
cracked plate alone an artificial surface boundary I'y as displayed in Figure 3. Within the
singular region, solution is obtained by the FFEM, and inside the regular domain, it is
obtained by conventional FEM technique. The generalized stiffness matrix in the singular
domain is evaluated by transforming the stiffness matrix of the first layer of mesh (in Figure

4) and modifying each element in this matrix accordingly.

For the first layer of fractal mesh, as only d; (the DOF of the slave nodes which are nodes
other than master nodes as shown in Figure 4) will be transformed, the global interpolation of

displacements can be written as follows:
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where | is the identity matrix, T/ =T/ (r,0) is the transformation matrix that can be

evaluated from the displacement eigenfunctions using equations (12-15), a is the

corresponding generalized coordinates vector of T/ and d,, denotes the DOF of master nodes

of the first layer of fractal mesh. The generalized stiffness matrix for the first layer may be

expressed as,
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For inner layers of fractal mesh, each element stiffness matrix within the first layer is
transformed and assembled. Based on self-similarity (fractal) concept, infinite number of

elements with similar shapes and numerous DOF will be generated near the crack tip with
proportional factor of & as illustrated in Figure 4. The fractal transformation method as

described in details by Su et al. (2001) will be used to transform and assemble infinitely many

layers of mesh. The principle of this method will be explained herein.

For inner layers, all the rotational and translational DOF will be transformed to the

corresponding generalized coordinates a. Following equations (12-15), the transformation

functions may be written in matrix formT* for a triangular element at the k” inner layer, such



that T = [le T T ]T where the subscripts (1,2 and 3) stand for the 3 nodes of the
triangular element. By comparing the transformation matrices of the 1** and k™ layers of the
mesh, the sub-matrix T, (/=1,2 and 3) can further be related to the corresponding counterparts

of the first layer by using the variable & . Hence, the sub-matrix T/ becomes,
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in which TVJ:; ,Tyj:z and va; represent the transformation functions of the rotational (y; and y»)

and vertical (w) displacements, respectively, of the 1* layer.

The generalized stiffness matrix of k” layer is given as

KE =TT kTk
T b K kT 2
k k
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By substituting equations (19) and (22) into equation (24), one can express the Kt layer of

matrix in terms of the 1*' layer matrix,
K* = Diagla;] T/ K/ T/ Diag|a|. (25)

Superimposing the stiffness matrices from the o layer to infinite layer, one has the

generalized stiffness matrix K’

K' =3 K" = Diagle,]' /"K' T/ Diag[a,]. (26)
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All the entries in the generalized stiffness matrix K'of equation (26) are geometric series,

therefore, it can be further simplified as
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In short, equation (27) indicates that the generalized inner layer stiffness matrices can be

evaluated by simply evaluation of the generalized stiffness matrix of 1* layer (by standard

matrix transformation method) and modifying each entry l;ij of the matrix in turn by a scale

factor @, shown in equation(28). The proportional factor £ of 1/2 will be used in the

subsequent numerical studies. The generalized stiffness matrix of the singular region can be

obtained by adding up equations (21) and (27), therefore

Raa + Ri Ram _ Tng K ssTsf + Ri TA/[T K sm (29)
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5. Numerical Examples

Square plates with central crack subjected to bending, twisting and shear load as shown in
Figure 5 will be solved by the present FFEM. The Poisson’s ratio is assumed to be 0.3 for all
the cases. The influence of the finite boundaries to the moment intensity factors will be

discussed in details.
5.1 Plate with a crack subjected to bending moment
Consider a single crack in plate subjected to pure bending, Sih et al. (1962) using the

Kirchoff’s theory determined the analytical result for an infinite plate with a central crack.

The moment intensity factor K, was expressed as,
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K, =Ma (29)

where M is the applied moment and a is the crack length. For plate with finite width w, the
moment intensity factors against the ratio a/w were determined by Wilson and Thompson
(1971), Chen and Chen (1984), and Liu and Jiang (2000) using conventional finite element
method, hybrid displacement finite element method and global-local finite element method
respectively. In this paper, FFEM was used to solve this problem. Because of symmetry, a
quarter of the plate was used in the analysis, and it was divided into around 170 nodes and
270 triangular elements. Figure 6 depicts a typical mesh configuration for the crack length
ratio (a/w=0.05). Figure 7 shows a plot of the moment intensity factors determined by FFEM
and by other methods. It is observed that the results provide by FFEM agree well with the

other researchers. The maximum derivation with the other results is less than 7 %.
5.2 Plate with a crack subjected to pure torsion

Sih et al. (1962) had analytically solved an infinite plate with a central crack subjected to

uniform torsion 7. The moment intensity factor K, was expressed as,

K, =T,Ja (30)

Zehnder and Hui (1994) reviewed the same problem using a trial displacement function which
could satisfy the stress boundary conditions at crack surfaces and at the remote boundary.
Exact solution of both the cracked and uncracked plate problems were solved. None of the
stresses near the crack tip were found to be singular, thus K, should be equal to zero. Finite
plates with crack width ratio a/w ranged form 0.05 and 0.6 subjected to uniform twisting were
calculated by using FFEM. All the moment intensity factors K, were found to be zero. It is
noted that similar problems were solved by other researchers utilizing the incorrect analytical
results of Sih using finite element alternative approach [Chen and Shen, 1993] and global-
local method [Liu and Jiang, 2000], none of the methods could give the correct solution of

K ,=0.

5.3 Plate with a crack subjected to shear force

11



Consider a single crack in an infinite plate subjected to different arrangement of shear force
Qo as shown in Figure 5a and 5b. Sih et al. (1962) determined the moment intensity factors

K, and K,;,

8 3/2 8 3/2
K, =VQ°T‘Z and K, =Q% 31)

Those solutions were found to be incorrect by Zehnder and Hui (1994) using the complex

variable method. The corrected moment intensity factors are

3/2 3/2
a a
— VQO and K]] — QO

K
! 2 2

(32)

Though this classical problem has been investigated for more than forty years, very few
numerical solutions on this problem could be found in the literature. One of the examples is
Viz et al. (1995) who used the finite element method to solve the problems and employed the
virtual crack extension technique and nodal release technique to determine the moment
intensity factors. Errors arranged from 0.1 to 3.6% were reported. However, the influence of
finite boundaries on the computation of moment intensity factors was not discussed. This
problem was considered by FFEM, the results of mode I and II moment intensity factors
against various crack width ratio a/w are plotted in Figure 8 and Figure 9 respectively. The
present results are in closed agreement with these by Zehnder despite that the solutions of

infinite plate are comparing.
6. Conclusions

The formulation of the fractal finite element method to cracked plate by using Kirchhoff’s
theory has been discussed. The proposed method utilized the property of shape similarity of
DKT element and fractal transformation technique to transform the infinite number of nodal
displacements around the crack tip to a new set of generalized displacements. The number of
unknowns could be reduced significantly and the moment intensity factor could be obtained
directly from the generalized displacements. No other post-processing technique or

interpolation method is required to determine the moment intensity factors. Examples of mode

12



I and mode II problems related with cracked plates subjected to bending, twisting and shear
loads are provided. The influence of finite boundaries on the computation of moment intensity
factors is studied in details. This study demonstrated that the FFEM is accurate and reliable to

solve both mode I and mode II cracked thin plate problems.
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Figure 1. Notations for Kirchhoff’s plate.
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Figure 2. Plate bending elements with similar shapes.
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Figure 3. Singular and regular regions.
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Figure 4. Fractal Mesh Configuration of Triangular Plate Elements.
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(b)
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(d)

Figure 5. Problems of cracked plates studied by FFEM.

(a). Configuration of cracked plate.

(b). Cracked plate subjected to bending.

(c). Cracked plate subjected to torsion.

(d). Cracked plate subjected to shear (Mode I).
(e). Cracked plate subjected to shear (Mode II).
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Figure 6. Mesh for center edge crack (a/w = 0.05).
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Figure 7. Moment intensity factors for a square plate with central crack subjected to
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Figure 8. Mode I moment intensity factors for a square plate with central crack subjected

to shear.
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Figure 9. Mode II moment intensity factors for a square plate with central crack subjected
to shear.
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