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Abstract 
 

A semi-analytical method namely fractal finite element method is presented for the 

determination of mode I and mode II moment intensity factors for thin plate with crack using 

Kirchhoff’s theory. Using the concept of fractal geometry, infinite many of finite elements is 

generated virtually around the crack border. Based on the analytical global displacement 

function, numerous degrees of freedom (DOF) are transformed to a small set of generalised 

coordinates in an expeditious way. The stress intensity factors can be obtained directly from 

the generalized coordinates. No post-processing and special finite elements are required to 

develop for extracting the stress intensity factors. Examples of cracked plate subjected to 

bending, twisting and shear loads are given to illustrate the accuracy and efficiency of the 

present method. The influence of finite boundaries on the calculation of the moment intensity 

factors is studied in details. Very accuracy results when compare with the theoretical and 

numerical counterparts are found. 
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1.  Introduction 
 
Theoretical analysis of bending problems of cracked plates under the framework of classical 

plate theory has been examined in the past, although less extensively than the case of 

stretching. Such analysis was first carried out using the complex variable technique by 

Williams (1961). He obtained the general stress distribution in the vicinity of the crack tip for 

plates loaded in bending, and found that the stress was proportional to the inverse of the 

square root of the radial distance from the crack tip. Sih et al. (1962) used Williams’ results to 

define symmetric and anti-symmetric stress intensity factors for cracked infinite plate 

problems involving bending loads. Furthermore, they analytically solved an infinite plate with 

crack subjected to bending, twisting and shear loads. Those solutions were incorporated in the 

stress intensity factor handbook by Murakami (1987). However, Zehnder and Hui (1994) 

reconsidered those problems and found some errors in the solutions of cracks subjected to 

shearing and twisting loads. By using the conformal mapping method, the stress intensity 

factors for the uniform far-field shearing problem were found to be 2
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= . In the case of pure twisting, none of the stresses closed to crack tip were 

found to be singular, thus k1 and k2 are both equal to zero. The numerical solutions by Hui and 

Zehnder (1993) and Zucchini et al.(2000) also concurred with Zehnder’s solutions. 

 

To deal with more realistic problems with complicated boundary conditions for plates with 

cracks, numerical approaches appear to be imperative. Wilson and Thompson (1971) first 

calculated the symmetric bending stress intensity factor by means of crack tip deflections for 

a finite rectangular plate containing a centre crack, subjected to pure cylindrical bending by 

conventional finite element method. Ahmad and Loo (1979) developed a singular crack tip 

plate element and solved the problem of plate containing inclined central crack subjected to 

bending load. It is noted that the calculated stress intensity factors for both k1 and k2 were 

closely agreed with Sih’s solution despite that errors in the k2 solutions were found later by 

Zehnder and Hui (1994). Chen and Chen (1984) employed the hybrid-displacement finite 

element procedure using the singular elements embedded with crack-tip singularity to solve 

various boundary configurations of thin cracked plates under bending. However, anti-

symmetric bending stress intensity factor k2 was found not to be zero regardless the pure 

symmetrical problem of square center-cracked plate subjected to edge bending moment. Park 
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and Atluri (1999), Chen and Shen (1993) and Chen et al. (1992) used the finite element 

alternating approach to solve the problems of plates with single and multiple cracks. Only 

Chen and Shen actually considered the mixed mode plate bending problem by using the anti-

symmetric bending stress intensity factor derived from Sih et al. (1962). However, their 

results were found to be concurred with these of Sih but inconsistent with Zehnder’s 

solutions. 

 

According to these surveys, most of the researcher can accurately predict the symmetric 

moment intensity factor but not the anti-symmetric moment intensity factor. The investigation 

of a reliable and accurate numerical method to solve thin plate with mixed mode crack by 

numerical method is imperative. It is our attention to extend the fractal finite element method 

(FFEM) [Leung and Su, 1996] to solve thin cracked plate subjected to bending, twisting and 

shear loads. The FFEM combines the advantages of the finite element method and the 

efficiency of the fractal transformation technique to model the regular and singular behavior 

of cracked plates. To demonstrate the accuracy and reliability of this technique for both mode 

I and mode II problems, numerical examples concerning thin plates, with single crack, 

subjected to bending, shear and twisting are analyzed. The influence of finite boundaries on 

the computation of moment intensity factors is studied in detail.  

 
 
2.  Global interpolation function 
 

In the absence of the transverse loading, Timoshenko and Woinowsky-Krieger (1959) derived 

the appropriate differential equation controlling the deflection w= w(r,θ) of thin plate as 
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shears Q Qr and θ  can be related with the deflection w as follows 
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212 1( )ν
 is the flexural rigidity, E is the Young’s modulus and ν is the 

Poisson’s ratio. Assuming the traction-free boundary conditions at the crack faces, one has the 

boundary conditions, 
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It has been shown by Williams (1961) that the desired characteristic solutions are of the form 
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where a a  are the arbitrary constants. The relations between the 

constants are found by substituting equation (8) into (7) to yield 
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By neglecting the shear deformation, one has the rotational displacements 
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Substituting equations (9) and (10) into (8) and then into (11), one has the displacement 

distribution in the vicinity of the end of crack 
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Furthermore, the displacement distribution ( , , )ψ ψ1 2 w  in the rectangular coordinate system as 

shown in Figure 1 is given by the transformation, 
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Equation (15) represents a generalized displacement distribution in the vicinity of a crack tip. 

It will be used as the global interpolating function for the displacement field near the crack 

tip. 

 

Using the definitions of bending stress intensity factors for cracked plate by Sih et al. (1962), 

the moment intensity factors K1  and K2  are defined as follows, 
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Those factors can be obtained by substituting equation (14) into equations (3) and (6) and 

putting θ = 0 and , i.e., 0→r
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Therefore, the evaluation of moment intensity factors is directly reduced to the determination 

of the two coefficients a  and a . No post-analysis and extrapolation are needed. 1
1( )

1
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3.  DKT plate elements with similar shape 
 

The properties of plate bending elements with similar shapes as shown in Figure 2 will be 

explored here. A triangular 9 DOF element, namely a discrete Kirchhoff theory (DKT) 

element by Stricklin et al. (1969) is chosen for the subsequent fractal transformation. 

Considering two elements, denoted by 1 and k, having similar shapes of length ratio 
)1(

1/ −= k
k LL ξ  where 10 << ξ , the stiffness matrices for the element k can be expressed as,  
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Any sub-matrix in Kk may be related to that of K1 [Leung and Su, 1996] as follows:  
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Equation (19) can be used to calculate stiffness coefficients of any DKT element with 

geometric similarity.  

 
 
4.  Fractal transformation method 
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The FFEM is based on the separation of the singular domain and the regular domain from a 

cracked plate alone an artificial surface boundary Γ0 as displayed in Figure 3. Within the 

singular region, solution is obtained by the FFEM, and inside the regular domain, it is 

obtained by conventional FEM technique. The generalized stiffness matrix in the singular 

domain is evaluated by transforming the stiffness matrix of the first layer of mesh (in Figure 

4) and modifying each element in this matrix accordingly. 

 

For the first layer of fractal mesh, as only ds (the DOF of the slave nodes which are nodes 

other than master nodes as shown in Figure 4) will be transformed, the global interpolation of 

displacements can be written as follows: 
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where I is the identity matrix,  is the transformation matrix that can be 

evaluated from the displacement eigenfunctions using equations (12-15), a is the 

corresponding generalized coordinates vector of  and d

),( θrf
s

f
s TT =

f
sT m denotes the DOF of master nodes 

of the first layer of fractal mesh. The generalized stiffness matrix for the first layer may be 

expressed as, 
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For inner layers of fractal mesh, each element stiffness matrix within the first layer is 

transformed and assembled. Based on self-similarity (fractal) concept, infinite number of 

elements with similar shapes and numerous DOF will be generated near the crack tip with 

proportional factor of ξ as illustrated in Figure 4. The fractal transformation method as 

described in details by Su et al. (2001) will be used to transform and assemble infinitely many 

layers of mesh. The principle of this method will be explained herein. 

 

For inner layers, all the rotational and translational DOF will be transformed to the 

corresponding generalized coordinates a. Following equations (12-15), the transformation 

functions may be written in matrix form T  for a triangular element at the kk th inner layer, such 
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that where the subscripts (1,2 and 3) stand for the 3 nodes of the 

triangular element. By comparing the transformation matrices of the 1

[ Tkkkk
321 TTTT = ]

st and kth layers of the 

mesh, the sub-matrix  (l=1,2 and 3) can further be related to the corresponding counterparts 
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in which T T  represent the transformation functions of the rotational (ψTψ ψ1 2

f f
w
f, and 1 and ψ2) 

and vertical (w) displacements, respectively, of the 1st layer.  

 

The generalized stiffness matrix of kth layer is given as 
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By substituting equations (19) and (22) into equation (24), one can express the kth layer of 

matrix in terms of the 1st layer matrix, 
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Superimposing the stiffness matrices from the 2nd layer to infinite layer, one has the 

generalized stiffness matrix K i  
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All the entries in the generalized stiffness matrix iK of equation (26) are geometric series, 

therefore, it can be further simplified as 
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In short, equation (27) indicates that the generalized inner layer stiffness matrices can be 

evaluated by simply evaluation of the generalized stiffness matrix of 1st layer (by standard 

matrix transformation method) and modifying each entry kij
f  of the matrix in turn by a scale 

factor ijα  shown in equation(28). The proportional factor ξ of 21  will be used in the 

subsequent numerical studies. The generalized stiffness matrix of the singular region can be 

obtained by adding up equations (21) and (27), therefore 
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5.  Numerical Examples 

 

Square plates with central crack subjected to bending, twisting and shear load as shown in 

Figure 5 will be solved by the present FFEM. The Poisson’s ratio is assumed to be 0.3 for all 

the cases. The influence of the finite boundaries to the moment intensity factors will be 

discussed in details. 

 

5.1 Plate with a crack subjected to bending moment 

 

Consider a single crack in plate subjected to pure bending, Sih et al. (1962) using the 

Kirchoff’s theory determined the analytical result for an infinite plate with a central crack. 

The moment intensity factor  was expressed as, IK
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aMK I 0=           (29) 

 

where M0 is the applied moment and a is the crack length. For plate with finite width w, the 

moment intensity factors against the ratio a/w were determined by Wilson and Thompson 

(1971), Chen and Chen (1984), and Liu and Jiang (2000) using conventional finite element 

method, hybrid displacement finite element method and global-local finite element method 

respectively. In this paper, FFEM was used to solve this problem. Because of symmetry, a 

quarter of the plate was used in the analysis, and it was divided into around 170 nodes and 

270 triangular elements. Figure 6 depicts a typical mesh configuration for the crack length 

ratio (a/w=0.05). Figure 7 shows a plot of the moment intensity factors determined by FFEM 

and by other methods. It is observed that the results provide by FFEM agree well with the 

other researchers. The maximum derivation with the other results is less than 7 %. 

 

5.2 Plate with a crack subjected to pure torsion 

 

Sih et al. (1962) had analytically solved an infinite plate with a central crack subjected to 

uniform torsion T0. The moment intensity factor  was expressed as, IIK

 

aTK II 0=           (30) 

 

Zehnder and Hui (1994) reviewed the same problem using a trial displacement function which 

could satisfy the stress boundary conditions at crack surfaces and at the remote boundary. 

Exact solution of both the cracked and uncracked plate problems were solved. None of the 

stresses near the crack tip were found to be singular, thus  should be equal to zero. Finite 

plates with crack width ratio a/w ranged form 0.05 and 0.6 subjected to uniform twisting were 

calculated by using FFEM. All the moment intensity factors  were found to be zero. It is 

noted that similar problems were solved by other researchers utilizing the incorrect analytical 

results of Sih using finite element alternative approach [Chen and Shen, 1993] and global-

local method [Liu and Jiang, 2000], none of the methods could give the correct solution of 

=0. 

IIK

IIK

IIK

 

5.3 Plate with a crack subjected to shear force 

 11



 

Consider a single crack in an infinite plate subjected to different arrangement of shear force 

Q0 as shown in Figure 5a and 5b. Sih et al. (1962) determined the moment intensity factors 

 and ,  IK IIK

 

6
8 2/3

0aQ
K I

ν
=  and  

6
8 2/3

0aQ
K II =      (31) 

 

Those solutions were found to be incorrect by Zehnder and Hui (1994) using the complex 

variable method. The corrected moment intensity factors are 
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ν
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2

2/3
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Though this classical problem has been investigated for more than forty years, very few 

numerical solutions on this problem could be found in the literature. One of the examples is 

Viz et al. (1995) who used the finite element method to solve the problems and employed the 

virtual crack extension technique and nodal release technique to determine the moment 

intensity factors. Errors arranged from 0.1 to 3.6% were reported. However, the influence of 

finite boundaries on the computation of moment intensity factors was not discussed. This 

problem was considered by FFEM, the results of mode I and II moment intensity factors 

against various crack width ratio a/w are plotted in Figure 8 and Figure 9 respectively. The 

present results are in closed agreement with these by Zehnder despite that the solutions of 

infinite plate are comparing.  

 

6.  Conclusions 

 

The formulation of the fractal finite element method to cracked plate by using Kirchhoff’s 

theory has been discussed. The proposed method utilized the property of shape similarity of 

DKT element and fractal transformation technique to transform the infinite number of nodal 

displacements around the crack tip to a new set of generalized displacements. The number of 

unknowns could be reduced significantly and the moment intensity factor could be obtained 

directly from the generalized displacements. No other post-processing technique or 

interpolation method is required to determine the moment intensity factors. Examples of mode 
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I and mode II problems related with cracked plates subjected to bending, twisting and shear 

loads are provided. The influence of finite boundaries on the computation of moment intensity 

factors is studied in details. This study demonstrated that the FFEM is accurate and reliable to 

solve both mode I and mode II cracked thin plate problems. 
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Figure 1. Notations for Kirchhoff’s plate. 
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Figure 5. Problems of cracked plates studied by FFEM. 
 
(a). Configuration of cracked plate. 
(b). Cracked plate subjected to bending. 
(c). Cracked plate subjected to torsion. 
(d). Cracked plate subjected to shear (Mode I). 
(e). Cracked plate subjected to shear (Mode II). 
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Figure 6. Mesh for center edge crack (a/w = 0.05). 
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Figure 8. Mode I moment intensity factors for a square plate with central crack subjected 
to shear. 
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Figure 9. Mode II moment intensity factors for a square plate with central crack subjected 
to shear. 

 
 
 
 

 23


