File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: An improved method for discriminating ECG signals using typical nonlinear dynamic parameters and recurrence quantification analysis in cardiac disease therapy

TitleAn improved method for discriminating ECG signals using typical nonlinear dynamic parameters and recurrence quantification analysis in cardiac disease therapy
Authors
KeywordsMedical sciences
Computer applications
Issue Date2005
PublisherIEEE.
Citation
27th Annual International Conference of the Engineering in Medicine and Biology Society (IEEE-EMBS 2005), Shanghai, 17-18 January 2006. In Conference Proceedings of IEEE Engineering in Medicine and Biology Society, 2005, p. 2459-2462 How to Cite?
AbstractThe discrimination of ECG signals using nonlinear dynamic parameters is of crucial importance in the cardiac disease therapy and chaos control for arrhythmia defibrillation in the cardiac system. However, the discrimination results of previous studies using features such as maximal Lyapunov exponent (λ max) and correlation dimension (D 2) alone are somewhat limited in recognition rate. In this paper, improved methods for computing λ max and D 2 are purposed. Another parameter from recurrence quantification analysis is incorporated to the new multi-feature Bayesian classifier with λ max and D 2 so as to improve the discrimination power. Experimental results have verified the prediction using Fisher discriminant that the maximal vertical line length (V max) from recurrence quantification analysis is the best to distinguish different ECG classes. Experimental results using the MIT-BIH Arrhythmia Database show improved and excellent overall accuracy (96.3%), average sensitivity (96.3%) and average specificity (98.15%) for discriminating sinus, premature ventricular contraction and ventricular flutter signals. © 2005 IEEE.
Persistent Identifierhttp://hdl.handle.net/10722/45889
ISSN
References

 

DC FieldValueLanguage
dc.contributor.authorTang, Men_HK
dc.contributor.authorChang, CQen_HK
dc.contributor.authorFung, PCWen_HK
dc.contributor.authorChau, KTen_HK
dc.contributor.authorChan, FHYen_HK
dc.date.accessioned2007-10-30T06:37:49Z-
dc.date.available2007-10-30T06:37:49Z-
dc.date.issued2005en_HK
dc.identifier.citation27th Annual International Conference of the Engineering in Medicine and Biology Society (IEEE-EMBS 2005), Shanghai, 17-18 January 2006. In Conference Proceedings of IEEE Engineering in Medicine and Biology Society, 2005, p. 2459-2462en_HK
dc.identifier.issn0589-1019en_HK
dc.identifier.urihttp://hdl.handle.net/10722/45889-
dc.description.abstractThe discrimination of ECG signals using nonlinear dynamic parameters is of crucial importance in the cardiac disease therapy and chaos control for arrhythmia defibrillation in the cardiac system. However, the discrimination results of previous studies using features such as maximal Lyapunov exponent (λ max) and correlation dimension (D 2) alone are somewhat limited in recognition rate. In this paper, improved methods for computing λ max and D 2 are purposed. Another parameter from recurrence quantification analysis is incorporated to the new multi-feature Bayesian classifier with λ max and D 2 so as to improve the discrimination power. Experimental results have verified the prediction using Fisher discriminant that the maximal vertical line length (V max) from recurrence quantification analysis is the best to distinguish different ECG classes. Experimental results using the MIT-BIH Arrhythmia Database show improved and excellent overall accuracy (96.3%), average sensitivity (96.3%) and average specificity (98.15%) for discriminating sinus, premature ventricular contraction and ventricular flutter signals. © 2005 IEEE.en_HK
dc.format.extent256490 bytes-
dc.format.extent4066 bytes-
dc.format.extent13817 bytes-
dc.format.extent3485 bytes-
dc.format.extent15593 bytes-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypetext/plain-
dc.format.mimetypetext/plain-
dc.format.mimetypetext/plain-
dc.format.mimetypetext/plain-
dc.languageengen_HK
dc.publisherIEEE.en_HK
dc.relation.ispartofAnnual International Conference of the IEEE Engineering in Medicine and Biology - Proceedingsen_HK
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License-
dc.rights©2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.en_HK
dc.subjectMedical sciencesen_HK
dc.subjectComputer applicationsen_HK
dc.titleAn improved method for discriminating ECG signals using typical nonlinear dynamic parameters and recurrence quantification analysis in cardiac disease therapyen_HK
dc.typeConference_Paperen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=1557-170X&volume=&spage=2459&epage=2462&date=2005&atitle=An+improved+method+for+discriminating+ECG+signals+using+typical+nonlinear+dynamic+parameters+and+recurrence+quantification+analysis+in+cardiac+disease+therapyen_HK
dc.identifier.emailChang, CQ: cqchang@eee.hku.hken_HK
dc.identifier.emailChau, KT: ktchau@eee.hku.hken_HK
dc.identifier.authorityChang, CQ=rp00095en_HK
dc.identifier.authorityChau, KT=rp00096en_HK
dc.description.naturepublished_or_final_versionen_HK
dc.identifier.doi10.1109/IEMBS.2005.1616966-
dc.identifier.pmid17282735-
dc.identifier.scopuseid_2-s2.0-33846908352en_HK
dc.identifier.hkuros118945-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-33846908352&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.spage2459en_HK
dc.identifier.epage2462en_HK
dc.publisher.placeUnited Statesen_HK
dc.description.other27th Annual International Conference of the Engineering in Medicine and Biology Society (IEEE-EMBS 2005), Shanghai, 17-18 January 2006. In Conference Proceedings of IEEE Engineering in Medicine and Biology Society, 2005, p. 2459-2462-
dc.identifier.scopusauthoridTang, M=7401973887en_HK
dc.identifier.scopusauthoridChang, CQ=7407033052en_HK
dc.identifier.scopusauthoridFung, PCW=7101613315en_HK
dc.identifier.scopusauthoridChau, KT=7202674641en_HK
dc.identifier.scopusauthoridChan, FHY=7202586429en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats