File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Nonadiabatic noncyclic geometric phase and persistent current in one-dimensional rings

TitleNonadiabatic noncyclic geometric phase and persistent current in one-dimensional rings
Authors
KeywordsPhysics
Issue Date1999
PublisherAmerican Physical Society. The Journal's web site is located at http://prb.aps.org/
Citation
Physical Review B - Condensed Matter And Materials Physics, 1999, v. 60 n. 15, p. 10668-10671 How to Cite?
AbstractThe total geometric phase is composed of the nonadiabatic noncyclic Pancharatnam phase, the usual Aharonov-Bohm (AB) phase, and the effective AB phase. It is found that the persistent current in one-dimensional rings is determined from this phase. As applications, we address first the geometric phase and the persistent current in a ring subject to a cylindrically symmetric electromagnetic field. We show that the Pancharatnam phase recovers the Aharanov-Anandan phase in the case of cyclic evolution, as well as the Berry phase in the adiabatic evolution. Moreover, we discuss the persistent current induced by the spin-orbit-induced geometric phase in the presence of a local magnetic field. Generalization to many-body cases is also addressed. ©1999 The American Physical Society.
Persistent Identifierhttp://hdl.handle.net/10722/43277
ISSN
2001 Impact Factor: 3.07
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorWang, ZDen_HK
dc.contributor.authorZhu, SLen_HK
dc.date.accessioned2007-03-23T04:42:42Z-
dc.date.available2007-03-23T04:42:42Z-
dc.date.issued1999en_HK
dc.identifier.citationPhysical Review B - Condensed Matter And Materials Physics, 1999, v. 60 n. 15, p. 10668-10671en_HK
dc.identifier.issn0163-1829en_HK
dc.identifier.urihttp://hdl.handle.net/10722/43277-
dc.description.abstractThe total geometric phase is composed of the nonadiabatic noncyclic Pancharatnam phase, the usual Aharonov-Bohm (AB) phase, and the effective AB phase. It is found that the persistent current in one-dimensional rings is determined from this phase. As applications, we address first the geometric phase and the persistent current in a ring subject to a cylindrically symmetric electromagnetic field. We show that the Pancharatnam phase recovers the Aharanov-Anandan phase in the case of cyclic evolution, as well as the Berry phase in the adiabatic evolution. Moreover, we discuss the persistent current induced by the spin-orbit-induced geometric phase in the presence of a local magnetic field. Generalization to many-body cases is also addressed. ©1999 The American Physical Society.en_HK
dc.format.extent78052 bytes-
dc.format.extent45056 bytes-
dc.format.mimetypeapplication/pdf-
dc.format.mimetypeapplication/msword-
dc.languageengen_HK
dc.publisherAmerican Physical Society. The Journal's web site is located at http://prb.aps.org/en_HK
dc.relation.ispartofPhysical Review B - Condensed Matter and Materials Physicsen_HK
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License-
dc.rightsPhysical Review B (Condensed Matter and Materials Physics). Copyright © American Physical Society.en_HK
dc.subjectPhysicsen_HK
dc.titleNonadiabatic noncyclic geometric phase and persistent current in one-dimensional ringsen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=1098-0121&volume=60&issue=15&spage=10668&epage=10671&date=1999&atitle=Nonadiabatic+noncyclic+geometric+phase+and+persistent+current+in+one-dimensional+ringsen_HK
dc.identifier.emailWang, ZD: zwang@hkucc.hku.hken_HK
dc.identifier.authorityWang, ZD=rp00802en_HK
dc.description.naturepublished_or_final_versionen_HK
dc.identifier.doi10.1103/PhysRevB.60.10668en_HK
dc.identifier.scopuseid_2-s2.0-0000566590en_HK
dc.identifier.hkuros47465-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-0000566590&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume60en_HK
dc.identifier.issue15en_HK
dc.identifier.spage10668en_HK
dc.identifier.epage10671en_HK
dc.identifier.isiWOS:000083427600028-
dc.publisher.placeUnited Statesen_HK
dc.identifier.scopusauthoridWang, ZD=14828459100en_HK
dc.identifier.scopusauthoridZhu, SL=34972495900en_HK
dc.identifier.citeulike7507353-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats