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Nonadiabatic noncyclic geometric phase and persistent current in one-dimensional rings
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The total geometric phase is composed of the nonadiabatic noncyclic Pancharatham phase, the usual
Aharonov-Bohm(AB) phase, and the effective AB phase. It is found that the persistent current in one-
dimensional rings is determined from this phase. As applications, we address first the geometric phase and the
persistent current in a ring subject to a cylindrically symmetric electromagnetic field. We show that the
Pancharatnam phase recovers the Aharanov-Anandan phase in the case of cyclic evolution, as well as the Berry
phase in the adiabatic evolution. Moreover, we discuss the persistent current induced by the spin-orbit-induced
geometric phase in the presence of a local magnetic field. Generalization to many-body cases is also addressed.
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It was discovered by Berfythat a geometric phase satisfied. Furthermore, in general, a quasiparticle wave func-

ya(©)=i$(n(R)|V&n(R))-dR, in addition to the usual tion in a mesoscopic ring may follow a noncyclic evolution,

dynamical phase: l/ﬁngn(ﬁ(t))dt, is accumulated on the an_d thgs further theqretlcal understanding of noncyclic evo-
lution is greatly desirable. However, as we know, general

wave function of a quantum system, provided that th.enoncyclic cases have not yet been addressed in the study of

%he geometric phase in mesoscopic systems though the prop-
phase, commonly referred to as the Berry phase, has foungies of noncyclic evolution may be abundant.

many applications in condensed matter'phfs?ca further In this paper, we address the nonadiabatic and noncyclic

generalization of Berry’s concept was introduced by Aha‘geometric phase in mesoscopic rings, the sizes of which are

ronov and Anand#AA ),* provided that the evolution of the |ess than the phase relaxation length of quantum particles

state is cyclic. Besides, Samuel and Bhand&B) intro-  such that the quantum mechanics can be used directly. We

duced a more general geometric phase in the nonadiabatiemonstrate that persistent probability currents are deter-

noncyclic evolution of the systemthe Pancharatnam mined from the total geometric phase. As applications, we

phasg.® The noncyclic evolution is quite ordinary in a quan- consider first mesoscopic rings subject to crown-shaped

tum system, however, the SB’s generalization has so far apnagnetic and electric fields both with constant tilting angles.

peared to be merely a mathematical point of view, and fewSecondly, we address PC induced by the spin<(shi-

realistic systems have been addressed by using this generdltduced geometric phase in the presence of local magnetic

zation. field. Finally, we generalize our formulation to many-body
On the other hand, persistent currefRE) in mesoscopic  cases.

normal metal rings have recently drawn considerable Let us first introduce briefly the generalization of Berry

interest€-8 Many author® °addressed the geometric phasephase to a nonadiabatic noncyclic evolutidfi.For a quan-

in such mesoscopic systems. Lossal. investigated the tum system whose normalized dimensionless state vegjor

adiabatic electronic transport in mesoscopic rings embedde@n element of a Hilbert spade) evolves according to the

in a magnetic field, and found that the persistent charge andchralinger equationf d/ ot| (t)) = |2||¢(t)>, the phase ac-

spin currents can be induced by the Berry pia3e PC  cumulated on an evolution ¢(s)) (with s as a parametgr

induced by geometric Aharonov-CashecC) effect fromthe  from s, to s, (along a geodesic path-12) is given by a

symmetric electric field was proposét:' The PC of certain  generalized Pancharatnam phase

hard-core bosons induced by AC effect was addressed in

Ref. 12. Noticing these investigations, a more fundamental ~

and important question arises: can certain type of PC exist so YsB™ Imfl_)2<z,11|d/ds| ¢)ds. @)

long as the geometric phase is non-zero? On the other hand, _

the adiabatic approximation has been widely used in manyf the dynamical phase can be eliminated frorgg, it be-

theoretical studies*31*though the adiabatic approxima- comes the standard Pancharatnam phage®*®

tion is not applicable in mesoscopic rings in many cases. The We here consider a particle.g., an electronwith mass

adiabatic conditionuBa>#%V; has been obtained by Stéfn m confined to a mesoscopic rirfgith the circumferencé.,

for a ring subject to a magnetic fiel| with the ring radius radiusa) subject to electromagnetic fields. Such a mesoc-

as a, the electron magnetic moment as and the Fermi sopic ring may be fabricated on the basis of a highly mobile

velocity asV;. For copper rings considered in Ref. V; two-dimensional electron gas. For brevity, we denaf&"

~1.57x10°m/sa~2.3x10 ®m,B~10 2 Tesla. For GaAs- =eA— uaas an effective electromagnetic vector potential of

AlGaAs single loop considered in Ref. 8Y;~2.6 the spinj system, wheré\ is the usualJ(1) vector poten-

X 10°m/s,a~8.4x 10 °m,B~ 102 Tesla. In those two typi- tial in connection with charge-e and a is an effective

cal mesoscopic systems, the adiabatic condition is noBU(2)s,;, spin-dependent vector potential in connection
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with magnetic magnetom [see, e.g., the detail below Eq. 4

(7)]. In the cylindrical coordinate r(¢,z), the one- jP=—538v4. (6)
dimensional current density operator in the ring is given by mlc

J=—i(hImL)(d/d¢)— (LImL)A®™, and thus the current For an equilibrium system, the calculation of the observable

carried by an arbitrary stafe) in the ring is found to be  persistent currentjP) should be subject to the constrain that
" , the free energy of the system is minimized.
o g The persistent probability currents can be displayed in
= ?{ |mf0 de(yld/de|4) different ways and some of them may be observed in experi-
ments. For examplegi) for the persistent charge current
1(2m Lc =—¢(jP) carried byN non-interacting electrons in a meso-
- Zfo de(y] EAm '/’>}’ (20 scopic normal-metal ring subject to an AB fIfi€ we have
I =(—eh/mLY)ZL (8y7), where 5y{ is the geometric
where AZ™ is the ¢ component ofA®™ It is of interest o phase of the-th particle in the ring{ii) the persistent mass
note that the first term in the brackets of the right-hand-sideyng spin currents can be induced by the AC eft8et: (i)
(RHS) of Eq. (2) is just the generalized Pancharatnamthe persistent fluxon currents may be carried by neutral hard-
phase accumulated on the evolution when the parameteore bosons with magnetic momefts.

¢ changes from O to 2, and the second term_repre-  PC in mesoscopic rings reflects the broken clockwise-
sents the total Aharonov-BohmAB) phase y.3= anticlockwise symmetry of charge carriers momenta. Ihm

—(1/ﬁ)f3”dgo(z,b|(LC/2w)AZm| ), which includes the usual demonstrated that in the absence of singularity, Berry phase
AB phasey,g and the effective AB phasgSH (see the later aries only if the time-reversal symmetry is broké&nThe

discussion for detais The total phase accumulated on thetime-reversal symmetry implies that the same phase factor,
evolution can then be defined &y="ysg+ yA%. Therefore, including both geometric and dynamical phases, would be

we can rewrite Eq(2) as accumulated in the evolution of an electron moving around
the ring in both clockwise and anticlockwise directions.

A However, notice that the geometric phases accumulated in

j=—=9dv. (3) the two directions of evolution have different signs even

mlc though two dynamical phases are identical. Therefore, a kind

It is worth pointing out that the macroscopically observable®f PC can be induced by the nonzero geometric phase asso-
current is the statistically averaged currenj) ciated with the broken time-reversal symmetry in mesos-
— (AImL2)(5y). Practically, the above formula can be fur- COPIC rings. As applications of Eq6), we investigate first

Lo e L : : : the PC and the geometric phase induced by electromagneic
h lif h I I h -
:alservielzmvalll Isigézsr:%?l/osv_ysma systems including the mod fields, and then address a novel kind of PC induced by the

If the A*™Mis independent of the time explicitly, so is the ﬁgi';n]fij;ged geometric phase in the presence of a local mag-
HamiltonianH of the ring (see, e.g., Eq47) and (A13) be- The .nonrelativistic Hamiltonian ~ with U(1)ap,
low). The stationary Schdinger equation isH[I(¢))  xSU(2),,, gauge symmetry of an electron with charge
=g||l(¢)) with & being time-independent eigen-energy —e and spin 1/2 in an external electromagnetic field is given
and|l(¢)) eigen-function, where (142) [3™(I(¢)|k(¢))de by*°

= A dimensionless state vector can be expressed as

l(t)) == aexp(—iet/h)|1(¢)), where a
=(1/27) [37(1(¢)| #(0))d¢ is time-independent. If the con-
dition [,.(1(¢)|d/de|k(¢))de=0 is satisfied ysg may
further be written as

1
A= o (pteA—ua)’~eA’+ ua’, @

where A”= (A% A) represent foulU(1).n, electromagnetic
vector potentials, andi”z(ao,a)z(—&-B,c;x E/2) is an

~ 2m d SU(2)spin POtential witho as the vector of Pauli matrices.

Yss= |mf0 2| afal(¢)] @“(‘P»d‘:": vse,  (4) Cle(arl);plt?ugsU(2)Spin vector potentiah plays a similar role

_ to that of theU(1)., vector potentialA in the AB effect.

where the dynamic phase has been canceled. Although Eetherefore, the effective vector potential may be defined as
(4) is similar to the definition of the Berry phase except thatpem_ eA—pa. Thus one can expect that an effective AB
ysg takes the averaged value, it should be emphasized thghase can be induced by t8)(2), i, vector potential. The
Eq. (4) can be used in a nonadiabatic noncyclic evolution. Ofyygmiltonian of the ring, subject to cylindrically symmetric
course,— ysg becomes the Berry phase for an adiabatic €VOglectromagnetic  fields E(¢)=E(sinye +cosye,),B(¢)

lution of any eigenstate dfi. Moreover, the total AB phase = B(sin#e +cosée,), and a magnetic fluxp, is given by
may be rewritten as

1

- d ¢ 7
2w L H=ﬁw[—i—+———(cosxcos<,oox+cosxsingoay
Vii-- 7] Tae atatolEATe). ©

de ¢o 2
2

We now have the relatiodj/dt=0, which implies thaj is —sinyo,)| —uB(sinécospoy,+sindsingay
an equilibrium persistent probability currejft and is deter-

mined from the total geometric phasey= ysg+ 71?;, i.e., +cosfo,), (8)
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where w=#/2mé?, po=27hle, n=uEalh is the normal-
ized electric field strength, and () is the tilting angle
between the magnetilectrig field andz axis. This Hamil-
tonian can be diagonalized as

H=2 Enelnelne, (a=%) 9)
Na
with
8++8( +1)_
o= S R,
where
¢ 1\ fiw
ens=ho| N+ ——*=psiny| ¥ uBcos+ - ncos’-X,
0

1
Ay=uBsind+hwncosy| n+ = + ¢£
0
and gn=(g(n+1)- —€n+)/2n=0,21,=2,.... The eigen-
functions are given by
. cog Bn/2)
|€n+ (o)) =€XR(iNg) ei"’sin(,Bn/Z))’
and
. —e '¢sin(B,/2)
|€nf(¢>>—e><p(|n<p) cod 8./2) )

with tgB,=A,/g,. Clearly, in the|&,.(¢)) state the spin

aligns with the angles,,, to the z-axis. An arbitrary state

|¢(‘Pvt)> = 210800 exp(_iEnat/ﬁ)|§na((P)> may not take a cy-

clic evolution because the spectriip, does not satisfy the
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phase in a mesoscopic ring is composed of the usual AB
phase, the effective AB phase, and the Pancharatnam phase
in the case of noncyclic evolution.

To compare our results with the previous results conve-
niently, we now discuss the geometric phase in the case of
n=0 andB#0. The AA phase exists whem(«) is chosen
to be a specific iy, ag), because the system is in a cyclic
state in this cas® If we denote the Pancharatnam phase as
Yol ° Whenan,= dnn Saa,: EQ- (10) leads toyel®=2ngm
+ aow(l—cosﬁno) ThIS result is similar to example two in
Ref. 4 except that here the ang?go links with the quantum
numberny. Using the expression d)Enoao(go)), we can find

that the AA phase is the same ag)B“O. Therefore, we have
examined thata o= ysg When the system takes a cyclic evo-
lution. Under the adiabatic conditiorﬁno= 0,a¢9=0g (the

index of spin, and — y"““O just gives out the Berry phase

Ngop 9,13,14
Berry "

As a typical example, the statistically averaged PC in the
ring with N non-interacting electrons can be represented as

eh

¢
"%

E (5y4y=

27ma® n

a:aana' (12)

+ a Sir?(B,/2) — agsin(ﬁn—x)

For N non-interacting particles which obey Fermi-Dirac dis-
tribution f(E,,,), a},an.= f(Ene). Of course, in the case of
E=0 andB=0, Eq.(12) reduces to the well-known result

I =—(eh/mma®)2 [N+ (Pl po) T (E,).
Another interesting application is PC induced by the SO-
induced geometric phase in the presence of a local magnetic

cyclic condition®® such that only the Pancharatnam phase igield. The electron spin in a low dimensional structure is

relevant. Since [p,:n o de(&n.(@)|d/de| &y . (¢))=0,

influenced by the momentum-dependent effective magnetic

we can employ Eq(4) to evaluate the Pancharatnam phasefield because the electron Hamiltonian includes a term linear

1-2 af,an. cosﬁn).
nNa
(10

YsB™ 2772 na:aana+ aT
Na

Meanwhile, the total AB phase is given by

e

')’)—;%t: %fo d‘PE anaana<§na(§0)| <p|§na >

27 Lc
_%fo dgo% Analnal Enal @)| 5 -aclénal¢))

= yast Yah, (11

where A= ¢/L. and a,= E/2(cosy coseoy+Ccosy sin¢ay
—sinya). It is straightforward to find thayag=27p/ g is
the usual AB phase induced by the magnetic flux afi{

=— w92, ad},an, SiN(B,—x) is an effective AB phase in-

in momentumP, i.e., H=(P?/2m)+(%/2)%; jo:8i;P; (Bij

is the SO splitting coefficientwhich describes the SO split-
ting of the electron states B+ 0. This SO interaction leads

to geometric phase effects in conducting ring$hus, PC in

the presence of an extern@r internaf?) local field can be
induced by this geometric phase. For a one-dimensional ring
subject to a local magnetic fieIBLéZ, the Hamiltonian in

the cylindrical coordinates is given &y

2
+hwi(oy COSQ+ 0y SiNg)

F|=hw(—ii+i

e o
Jd n ¢ Iﬁwl
X —|£ 970 5 —— (o sing— 0o, cosg)
+hwyo,| —i -l—i —uBL oy, (13
e o

duced by the crown-shaped electromagnetic field. In the speyhere w; =7 8,/2a. Equation(13) may be rewritten as

cial case oB=0, Choiet al. found that the total geometric
phase induced by the electric field is the sum of the effective
AB phase and the AA phase when the cyclic condition is
satisfied™® Actually, we here find that the total geometric
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wherea, = (—al2ou)[ w1(oy COSp+ o0y sing)+w,0,]isthe  that the SO-induced Berry phase effect had been observed
p-component of the spin-dependent vector potential. The erexperimentally’* We thus expect that this kind of PC may be

ergy spectrum can be obtained as observable in a similar mesoscopic experiment. Estim&tion
o )2 b2 indicates that, for an InAs ring with radius asuB and
SO_ Tt 2| +ln+1+—| |+aViZra2 width as 6Gm,m~0.023n,, >% o~ 6, which may induce
Na 2 ¢ ¢ n n»
0 0 an observable effect.
. (14 Finally, we may generalize our discussion to many-body
with cases. The Schdinger equation for N particles in a ring
1 ¢ reads i (a/ot)|V(,, ..o ) =HIV(4,...oy)- The many-
vo=h(w—wy)| N+ s+ —|+uB_, ;
2 ¢ particle quantum phase may be expressed as
and 1 27 2w < |
1 5’}/(N)=—7RGJ ng]_' f d(,DN \I’( )
An=fio; Al (2mNt o 0 e
2 ¢ N
The statistically averaged PC of N non-interacting electrons X > | —i d _ Lo pem W o). (16)
is found to be =1 der 2wk e[l RN
so As a result, we still havej)=(#/mL2)(8y(N)). For N
_ ef ¢ P |l— . . . N hed .
— N+ —+ ——|a* a,., (15  hon-interacting particles, it is not difficult to derive that
2mma? na b0 do| 5y(N)==N_, 59", Clearly, the statistically averaged cur-
where $3°= $o/2{1+ (al 0)[(0— wo) v+ wiN,]/  TEN obtained before can be naturally recovered. We wish

| to remark that the above generalization may allow us to in-
“clude the effect of electron-electron interaction, which is
highly nontrivial and may be investigated in the future.

\/vn2+ )\nz}. We wish to make a few remarks on this mode
(i) In the case ofp)=B, =0, the averaged PC should be zero
because the enerdy,, is exactly equal t&E_ . 1),.> (i)
The SO-induced geometric phase contributes to the PC, pro- This work was supported by a CRCG grant at the Univer-
vided thatB, #0 or ¢# 0. (iii) It was reported very recently sity of Hong Kong.
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