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Nonadiabatic noncyclic geometric phase and persistent current in one-dimensional rings

Z. D. Wang and Shi-Liang Zhu
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The total geometric phase is composed of the nonadiabatic noncyclic Pancharatnam phase, the usual
Aharonov-Bohm~AB! phase, and the effective AB phase. It is found that the persistent current in one-
dimensional rings is determined from this phase. As applications, we address first the geometric phase and the
persistent current in a ring subject to a cylindrically symmetric electromagnetic field. We show that the
Pancharatnam phase recovers the Aharanov-Anandan phase in the case of cyclic evolution, as well as the Berry
phase in the adiabatic evolution. Moreover, we discuss the persistent current induced by the spin-orbit-induced
geometric phase in the presence of a local magnetic field. Generalization to many-body cases is also addressed.
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It was discovered by Berry1 that a geometric phas

gn(c)5 i rc^n(RW )u,RW un(RW )&•dRW , in addition to the usua

dynamical phase,21/\*0
tEn(RW (t))dt, is accumulated on the

wave function of a quantum system, provided that
Hamiltonian is cyclic and adiabatic. This adiabatic geome
phase, commonly referred to as the Berry phase, has fo
many applications in condensed matter physics2,3. A further
generalization of Berry’s concept was introduced by Ah
ronov and Ananda~AA !,4 provided that the evolution of the
state is cyclic. Besides, Samuel and Bhandari~SB! intro-
duced a more general geometric phase in the nonadia
noncyclic evolution of the system~the Pancharatnam
phase!.5 The noncyclic evolution is quite ordinary in a qua
tum system, however, the SB’s generalization has so far
peared to be merely a mathematical point of view, and f
realistic systems have been addressed by using this gen
zation.

On the other hand, persistent currents~PC! in mesoscopic
normal metal rings have recently drawn considera
interests.6–8 Many authors9–15 addressed the geometric pha
in such mesoscopic systems. Losset al. investigated the
adiabatic electronic transport in mesoscopic rings embed
in a magnetic field, and found that the persistent charge
spin currents can be induced by the Berry phase.9 The PC
induced by geometric Aharonov-Casher~AC! effect from the
symmetric electric field was proposed.10,11The PC of certain
hard-core bosons induced by AC effect was addresse
Ref. 12. Noticing these investigations, a more fundame
and important question arises: can certain type of PC exis
long as the geometric phase is non-zero? On the other h
the adiabatic approximation has been widely used in m
theoretical studies9,11,13,14 though the adiabatic approxima
tion is not applicable in mesoscopic rings in many cases.
adiabatic conditionmBa@\Vf has been obtained by Stern13

for a ring subject to a magnetic fieldB, with the ring radius
as a, the electron magnetic moment asm, and the Fermi
velocity asVf . For copper rings considered in Ref. 7,Vf
;1.573105m/s,a;2.331026m,B;1022 Tesla. For GaAs-
AlGaAs single loop considered in Ref. 8,Vf;2.6
3105m/s,a;8.431026m,B;1022 Tesla. In those two typi-
cal mesoscopic systems, the adiabatic condition is
PRB 600163-1829/99/60~15!/10668~4!/$15.00
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satisfied. Furthermore, in general, a quasiparticle wave fu
tion in a mesoscopic ring may follow a noncyclic evolutio
and thus further theoretical understanding of noncyclic e
lution is greatly desirable. However, as we know, gene
noncyclic cases have not yet been addressed in the stud
the geometric phase in mesoscopic systems though the p
erties of noncyclic evolution may be abundant.

In this paper, we address the nonadiabatic and noncy
geometric phase in mesoscopic rings, the sizes of which
less than the phase relaxation length of quantum parti
such that the quantum mechanics can be used directly.
demonstrate that persistent probability currents are de
mined from the total geometric phase. As applications,
consider first mesoscopic rings subject to crown-sha
magnetic and electric fields both with constant tilting angl
Secondly, we address PC induced by the spin-orbit~SO!-
induced geometric phase in the presence of local magn
field. Finally, we generalize our formulation to many-bod
cases.

Let us first introduce briefly the generalization of Ber
phase to a nonadiabatic noncyclic evolution.5,16 For a quan-
tum system whose normalized dimensionless state vectoruc&
~an element of a Hilbert spaceH) evolves according to the
Schrödinger equationi\]/]tuc(t)&5Ĥuc(t)&, the phase ac-
cumulated on an evolution ofuc(s)& ~with s as a parameter!
from s1 to s2 ~along a geodesic path 1→2) is given by a
generalized Pancharatnam phase

g̃SB5ImE
1→2

^cud/dsuc&ds. ~1!

If the dynamical phase can be eliminated fromg̃SB, it be-
comes the standard Pancharatnam phasegSB.5,16

We here consider a particle~e.g., an electron! with mass
m confined to a mesoscopic ring~with the circumferenceLc ,
radius a! subject to electromagnetic fields. Such a mes
sopic ring may be fabricated on the basis of a highly mob
two-dimensional electron gas. For brevity, we denoteAem

5eA2ma as an effective electromagnetic vector potential
the spin-12 system, whereA is the usualU(1) vector poten-
tial in connection with charge2e and a is an effective
SU(2)spin spin-dependent vector potential in connecti
10 668 ©1999 The American Physical Society
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with magnetic magnetonm @see, e.g., the detail below Eq
~7!#. In the cylindrical coordinate (r ,w,z), the one-
dimensional current density operator in the ring is given
ĵ 52 i (\/mLc)(]/]w)2(1/mLc)A

em, and thus the curren
carried by an arbitrary stateuc& in the ring is found to be

j 5
\

mLc
2 F ImE

0

2p

dw^cud/dwuc&

2
1

\E0

2p

dw^cu
Lc

2p
Aw

emuc&G , ~2!

whereAw
em is the w component ofAem. It is of interest to

note that the first term in the brackets of the right-hand-s
~RHS! of Eq. ~2! is just the generalized Pancharatna
phase accumulated on the evolution when the param
w changes from 0 to 2p, and the second term repre
sents the total Aharonov-Bohm~AB! phase gAB

Tot5

2(1/\)*0
2pdw^cu(Lc/2p)Aw

emuc&, which includes the usua
AB phasegAB and the effective AB phasegAB

e f f ~see the later
discussion for details!. The total phase accumulated on t
evolution can then be defined asdg5g̃SB1gAB

Tot . Therefore,
we can rewrite Eq.~2! as

j 5
\

mLC
2

dg. ~3!

It is worth pointing out that the macroscopically observa
current is the statistically averaged current̂ j &
5(\/mLC

2 )^dg&. Practically, the above formula can be fu
ther simplified in many physical systems including the mo
els we will discuss below.

If the Aem is independent of the time explicitly, so is th
HamiltonianĤ of the ring ~see, e.g., Eqs.~7! and ~13! be-
low!. The stationary Schro¨dinger equation isĤu l (w)&
5« l u l (w)& with « l being time-independent eigen-ener
and u l (w)& eigen-function, where (1/2p)*0

2p^ l (w)uk(w)&dw
5d lk . A dimensionless state vector can be expressed
uc(t)&5( lalexp(2 i« l t/\)u l (w)&, where al

5(1/2p)*0
2p^ l (w)uc(0)&dw is time-independent. If the con

dition * lÞk^ l (w)ud/dwuk(w)&dw50 is satisfied,17 g̃SB may
further be written as

g̃SB5ImE
0

2p

(
l

al* al^ l ~w!u
d

dw
u l ~w!&dw5gSB, ~4!

where the dynamic phase has been canceled. Although
~4! is similar to the definition of the Berry phase except th
gSB takes the averaged value, it should be emphasized
Eq. ~4! can be used in a nonadiabatic noncyclic evolution.
course,2gSB becomes the Berry phase for an adiabatic e
lution of any eigenstate ofĤ. Moreover, the total AB phase
may be rewritten as

gAB
Tot52

1

\E0

2p

dw(
l

al* al^ l ~w!u
Lc

2p
Aw

emu l ~w!&. ~5!

We now have the relationd j /dt50, which implies thatj is
an equilibrium persistent probability currentj p and is deter-
mined from the total geometric phasedgg5gSB1gAB

Tot , i.e.,
y

e

ter

-

as

q.
t
at
f
-

j p5
\

mLC
2

dgg . ~6!

For an equilibrium system, the calculation of the observa
persistent current̂j p& should be subject to the constrain th
the free energy of the system is minimized.

The persistent probability currents can be displayed
different ways and some of them may be observed in exp
ments. For examples,~i! for the persistent charge currentI
52e^ j p& carried byN non-interacting electrons in a meso
scopic normal-metal ring subject to an AB flux,6–8 we have
I 5(2e\/mLc

2)( r 51
N ^dgg

(r )&, where dgg
(r ) is the geometric

phase of ther-th particle in the ring;~ii ! the persistent mas
and spin currents can be induced by the AC effect;10,11 ~iii !
the persistent fluxon currents may be carried by neutral h
core bosons with magnetic moments.12

PC in mesoscopic rings reflects the broken clockwi
anticlockwise symmetry of charge carriers momenta. I
demonstrated that in the absence of singularity, Berry ph
aries only if the time-reversal symmetry is broken.18 The
time-reversal symmetry implies that the same phase fac
including both geometric and dynamical phases, would
accumulated in the evolution of an electron moving arou
the ring in both clockwise and anticlockwise direction
However, notice that the geometric phases accumulate
the two directions of evolution have different signs ev
though two dynamical phases are identical. Therefore, a k
of PC can be induced by the nonzero geometric phase a
ciated with the broken time-reversal symmetry in mes
copic rings. As applications of Eq.~6!, we investigate first
the PC and the geometric phase induced by electromag
fields, and then address a novel kind of PC induced by
SO-induced geometric phase in the presence of a local m
netic field.

The nonrelativistic Hamiltonian with U(1)em
3SU(2)spin gauge symmetry of an electron with charg
2e and spin 1/2 in an external electromagnetic field is giv
by10

Ĥ5
1

2m
~p1eA2ma!22eA01ma0, ~7!

where An5(A0,A) represent fourU(1)em electromagnetic
vector potentials, andan5(a0,a)5(2sW •B,sW 3E/2) is an
SU(2)spin potential withsW as the vector of Pauli matrices
Clearly, theSU(2)spin vector potentiala plays a similar role
to that of theU(1)em vector potentialA in the AB effect.
Therefore, the effective vector potential may be defined
Aem5eA2ma. Thus one can expect that an effective A
phase can be induced by thisSU(2)spin vector potential. The
Hamiltonian of the ring, subject to cylindrically symmetr
electromagnetic fields E(w)5E(sinxer1cosxez),B(w)
5B(sinuer1cosuez), and a magnetic fluxf, is given by

Ĥ5\vF2 i
d

dw
1

f

f0
2

h

2
~cosx coswsx1cosx sinwsy

2sinxsz!G2

2mB~sinu coswsx1sinu sinwsy

1cosusz!, ~8!
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where v5\/2ma2,f052p\/e,h5mEa/\ is the normal-
ized electric field strength, andu (x) is the tilting angle
between the magnetic~electric! field andz axis. This Hamil-
tonian can be diagonalized as

Ĥ5(
na

Enaâna
1 âna , ~a56 ! ~9!

with

Ena5
«n11« (n11)2

2
1aAgn

21nn
2,

where

«n65\vS n1
f

f0
6

1

2
h sinx D 2

7mB cosu1
\v

4
h2cos2x,

nn5mB sinu1\vh cosxS n1
1

2
1

f

f0
D ,

and gn5(« (n11)22«n1)/2,n50,61,62, . . . . The eigen-
functions are given by

ujn1(w)&5exp~ inw!S cos~bn/2!

eiwsin~bn/2!
D ,

and

ujn2(w)&5exp~ inw!S 2e2 iw sin~bn/2!

cos~bn/2!
D ,

with tgbn5nn /gn . Clearly, in theujna(w)& state the spin
aligns with the anglebna to the z-axis. An arbitrary state
uc(w,t)&5(naana exp(2iEnat/\)ujna(w)& may not take a cy-
clic evolution because the spectrumEna does not satisfy the
cyclic condition,19 such that only the Pancharatnam phase
relevant. Since *naÞn8a8dw^jna(w)ud/dwujn8a8(w)&50,
we can employ Eq.~4! to evaluate the Pancharatnam pha

gSB52p(
na

nana* ana1apS 12(
na

ana* ana cosbnD .

~10!

Meanwhile, the total AB phase is given by

gAB
Tot5

e

\E0

2p

dw(
na

ana* ana^jna~w!u
Lc

2p
Awujna~w!&

2
m

\ E0

2p

dw(
na

ana* ana^jna~w!u
Lc

2p
awujna~w!&

5gAB1gAB
e f f , ~11!

where Aw5f/Lc and aw5E/2(cosx coswsx1cosx sinwsy
2sinxsz). It is straightforward to find thatgAB52pf/f0 is
the usual AB phase induced by the magnetic flux andgAB

e f f

52ph(naaana* ana sin(bn2x) is an effective AB phase in
duced by the crown-shaped electromagnetic field. In the s
cial case ofB50, Choiet al. found that the total geometri
phase induced by the electric field is the sum of the effec
AB phase and the AA phase when the cyclic condition
satisfied.15 Actually, we here find that the total geometr
s

e-

e
s

phase in a mesoscopic ring is composed of the usual
phase, the effective AB phase, and the Pancharatnam p
in the case of noncyclic evolution.

To compare our results with the previous results con
niently, we now discuss the geometric phase in the cas
h50 andBÞ0. The AA phase exists when (n,a) is chosen
to be a specific (n0 ,a0), because the system is in a cycl
state in this case.20 If we denote the Pancharatnam phase
gSB

n0a0 when ana5dnn0
daa0

, Eq. ~10! leads togSB
n0a052n0p

1a0p(12cosbn0
). This result is similar to example two in

Ref. 4 except that here the anglebn0
links with the quantum

numbern0. Using the expression ofujn0a0
(w)&, we can find

that the AA phase is the same asgSB
n0a0 . Therefore, we have

examined thatgAA5gSB when the system takes a cyclic ev
lution. Under the adiabatic condition,bn0

5u,a05s0 ~the

index of spin!, and 2gSB
n0a0 just gives out the Berry phas

gBerry
n0s0 .9,13,14

As a typical example, the statistically averaged PC in
ring with N non-interacting electrons can be represented

Ī 52
e\

mLC
2 (

r
^dgg

(r )&52
e\

2pma2 (
na

Fn1
f

f0

1a sin2~bn/2!2a
h

2
sin~bn2x!Gana* ana. ~12!

For N non-interacting particles which obey Fermi-Dirac di
tribution f (Ena), ana* ana5 f (Ena). Of course, in the case o
E50 andB50, Eq. ~12! reduces to the well-known resu
Ī 52(e\/pma2)(n@n1(f/f0)# f (En).

Another interesting application is PC induced by the S
induced geometric phase in the presence of a local magn
field. The electron spin in a low dimensional structure
influenced by the momentum-dependent effective magn
field because the electron Hamiltonian includes a term lin
in momentumP, i.e., Ĥ5(P2/2m)1(\/2)( i , js ib i j Pj (b i j
is the SO splitting coefficient!, which describes the SO split
ting of the electron states atPÞ0. This SO interaction leads
to geometric phase effects in conducting rings.14 Thus, PC in
the presence of an external~or internal21! local field can be
induced by this geometric phase. For a one-dimensional
subject to a local magnetic fieldBLeW z , the Hamiltonian in
the cylindrical coordinates is given by22

Ĥ5\vS 2 i
]

]w
1

f

f0
D 2

1\v1~sx cosw1sy sinw!

3S 2 i
]

]w
1

f

f0
D1

i\v1

2
~sx sinw2sy cosw!

1\v2szS 2 i
]

]w
1

f

f0
D2mBLsz , ~13!

wherev i5\b i /2a. Equation~13! may be rewritten as

Ĥ5\vF2 i
]

]w
1

f

f0
2

m

a
awG2

2mBLsz2
v1

21v2
2

4v2
,
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whereaw5(2a/2vm)@v1(sx cosw1sy sinw)1v2sz# is the
w-component of the spin-dependent vector potential. The
ergy spectrum can be obtained as

Ena
SO5

\v

2 F S n1
f

f0
D 2

1S n111
f

f0
D 2G1aAnn

21ln
2,

~14!

with

nn5\~v2v2!S n1
1

2
1

f

f0
D1mBL ,

and

ln5\v1S n1
1

2
1

f

f0
D .

The statistically averaged PC of N non-interacting electr
is found to be

Ī 52
e\

2pma2 (
na

Fn1
f

f0
1

fa
SO

f0
Gana* ana, ~15!

where fa
SO5f0/2$11(a/v)@(v2v2)nn1v1ln# /

Ann
21ln

2%. We wish to make a few remarks on this mod
~i! In the case off5BL50, the averaged PC should be ze
because the energyEna is exactly equal toE2(n11)a .23 ~ii !
The SO-induced geometric phase contributes to the PC,
vided thatBLÞ0 or fÞ0. ~iii ! It was reported very recently
h,

et
n-

s

.

o-

that the SO-induced Berry phase effect had been obse
experimentally.24 We thus expect that this kind of PC may b
observable in a similar mesoscopic experiment. Estimatio14

indicates that, for an InAs ring with radius as 5mm and
width as 60nm,m;0.023m0 ,fa

SO/f0;6, which may induce
an observable effect.

Finally, we may generalize our discussion to many-bo
cases. The Schro¨dinger equation for N particles in a rin
reads i\(]/]t)uC (w1•••wN)&5ĤuC (w1•••wN)&. The many-
particle quantum phase may be expressed as

dg~N!5
1

~2p!N21
ReE

0

2p

dw1•••E
0

2p

dwN^C (w1•••wN)u

3(
r 51

N F2 i
d

dw r
2

Lc

2p\
Awr

emG uC (w1•••wN)&. ~16!

As a result, we still havê j &5(\/mLC
2 )^dg(N)&. For N

non-interacting particles, it is not difficult to derive tha
dg(N)5( r 51

N dg (r ). Clearly, the statistically averaged cu

rent Ī obtained before can be naturally recovered. We w
to remark that the above generalization may allow us to
clude the effect of electron-electron interaction, which
highly nontrivial and may be investigated in the future.
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