File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Modelling strength and ductility of ultrafine grained BCC and FCC alloys using irreversible thermodynamics

TitleModelling strength and ductility of ultrafine grained BCC and FCC alloys using irreversible thermodynamics
Authors
KeywordsDuctility
Strength
Thermodynamics
Ultrafine Grained Alloys
Work Hardening Modelling
Issue Date2009
PublisherManey Publishing. The Journal's web site is located at http://www.maney.co.uk/search?fwaction=show&fwid=185
Citation
Materials Science And Technology, 2009, v. 25 n. 7, p. 833-839 How to Cite?
AbstractA novel grain size dependent strain hardening model is derived from the theory of irreversible thermodynamics. The model yields the evolution of the dislocation densities in the grain interior and at the grain boundary, as well as their contributions to the flow stress. It is found that submicron grain sizes have a lower dislocation density in the grain interior, causing ductility to decrease greatly. The predicted stress-strain curve shapes, uniform elongation and ultimate tensile strength values for interstitial free steels (body centred cubic) and aluminium alloys (AA1100, face centred cubic) show good agreement with experimental observations. © 2009 Institute of Materials, Minerals and Mining.
Persistent Identifierhttp://hdl.handle.net/10722/157019
ISSN
2015 Impact Factor: 1.008
2015 SCImago Journal Rankings: 0.668
ISI Accession Number ID
Funding AgencyGrant Number
ArcelorMittal
Funding Information:

The authors employed at the TU Delft are grateful to ArcelorMittal for financial support.

References

 

DC FieldValueLanguage
dc.contributor.authorHuang, Men_US
dc.contributor.authorRiveraDíazDelCastillo, PEJen_US
dc.contributor.authorBouaziz, Oen_US
dc.contributor.authorVan Der Zwaag, Sen_US
dc.date.accessioned2012-08-08T08:44:59Z-
dc.date.available2012-08-08T08:44:59Z-
dc.date.issued2009en_US
dc.identifier.citationMaterials Science And Technology, 2009, v. 25 n. 7, p. 833-839en_US
dc.identifier.issn0267-0836en_US
dc.identifier.urihttp://hdl.handle.net/10722/157019-
dc.description.abstractA novel grain size dependent strain hardening model is derived from the theory of irreversible thermodynamics. The model yields the evolution of the dislocation densities in the grain interior and at the grain boundary, as well as their contributions to the flow stress. It is found that submicron grain sizes have a lower dislocation density in the grain interior, causing ductility to decrease greatly. The predicted stress-strain curve shapes, uniform elongation and ultimate tensile strength values for interstitial free steels (body centred cubic) and aluminium alloys (AA1100, face centred cubic) show good agreement with experimental observations. © 2009 Institute of Materials, Minerals and Mining.en_US
dc.languageengen_US
dc.publisherManey Publishing. The Journal's web site is located at http://www.maney.co.uk/search?fwaction=show&fwid=185en_US
dc.relation.ispartofMaterials Science and Technologyen_US
dc.subjectDuctilityen_US
dc.subjectStrengthen_US
dc.subjectThermodynamicsen_US
dc.subjectUltrafine Grained Alloysen_US
dc.subjectWork Hardening Modellingen_US
dc.titleModelling strength and ductility of ultrafine grained BCC and FCC alloys using irreversible thermodynamicsen_US
dc.typeArticleen_US
dc.identifier.emailHuang, M:mxhuang@hku.hken_US
dc.identifier.authorityHuang, M=rp01418en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1179/174328408X353750en_US
dc.identifier.scopuseid_2-s2.0-68349104338en_US
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-68349104338&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume25en_US
dc.identifier.issue7en_US
dc.identifier.spage833en_US
dc.identifier.epage839en_US
dc.identifier.isiWOS:000268175300005-
dc.publisher.placeUnited Kingdomen_US
dc.identifier.scopusauthoridHuang, M=23469788700en_US
dc.identifier.scopusauthoridRiveraDíazdelCastillo, PEJ=6603017212en_US
dc.identifier.scopusauthoridBouaziz, O=6602183179en_US
dc.identifier.scopusauthoridVan Der Zwaag, S=7006817556en_US
dc.identifier.citeulike5290307-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats