File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Circulating CD133 +VEGFR2 + and CD34 +VEGFR2 + cells and arterial function in patients with beta-thalassaemia major

TitleCirculating CD133 +VEGFR2 + and CD34 +VEGFR2 + cells and arterial function in patients with beta-thalassaemia major
Authors
KeywordsMedicine & Public Health
Hematology
Oncology
Issue Date2011
PublisherSpringer Berlin / Heidelberg
Citation
Annals of Hematology, 2011, v. 91, n. 3, p. 345-352 How to Cite?
AbstractArterial dysfunction has been documented in patients with beta-thalassaemia major. This study aimed to determine the quantity and proliferative capacity of circulating CD133+VEGFR2+ and CD34+VEGFR2+ cells in patients with beta-thalassaemia major and those after haematopoietic stem cell transplantation (HSCT), and their relationships with arterial function. Brachial arterial flow-mediated dilation (FMD), carotid arterial stiffness, the quantity of these circulating cells and their number of colony-forming units (CFUs) were determined in 17 transfusion-dependent thalassaemia patients, 14 patients after HSCT and 11 controls. Compared with controls, both patient groups had significantly lower FMD and greater arterial stiffness. Despite having increased CD133+VEGFR2+ and CD34+VEGFR2+ cells, transfusion-dependent patients had significantly reduced CFUs compared with controls (p = 0.002). There was a trend of increasing CFUs across the three groups with decreasing iron load (p = 0.011). The CFUs correlated with brachial FMD (p = 0.029) and arterial stiffness (p = 0.02), but not with serum ferritin level. Multiple linear regression showed that CFU was a significant determinant of FMD (p = 0.043) and arterial stiffness (p = 0.02) after adjustment of age, sex, body mass index, blood pressure and serum ferritin level. In conclusion, arterial dysfunction found in patients with beta-thalassaemia major before and after HSCT may be related to impaired proliferation of CD133+VEGFR2+ and CD34+VEGFR2+ cells. © 2011 The Author(s).
Persistent Identifierhttp://hdl.handle.net/10722/144928
ISSN
2023 Impact Factor: 3.0
2023 SCImago Journal Rankings: 0.912
PubMed Central ID
ISI Accession Number ID
Funding AgencyGrant Number
Children's Thalassaemia Foundation
Funding Information:

The authors are grateful to the Children's Thalassaemia Foundation for funding this work

References

Cheung YF, Chan GC, Ha SY (2002) Arterial stiffness and endothelial function in patients with beta-thalassemia major. Circulation 106:2561–2566 doi: 10.1161/01.CIR.0000037225.92759.A7

Gedikli O, Altinbas A, Orucoglu A, Dogan A, Ozaydin M, Aslan SM, Acar G, Canatan D (2007) Elastic properties of the ascending aorta in patients with beta-thalassemia major. Echocardiography 24:830–836 doi: 10.1111/j.1540-8175.2007.00486.x

Ulger Z, Aydinok Y, Gurses D, Levent E, Ozyurek AR (2006) Stiffness of the abdominal aorta in beta-thalassemia major patients related with body iron load. J Pediatr Hematol Oncol 28:647–652 doi: 10.1097/01.mph.0000212987.18694.5a

Cheung YF, Ha SY, Chan GC (2005) Ventriculo-vascular interactions in patients with beta thalassaemia major. Heart 91:769–773 doi: 10.1136/hrt.2003.032110

Cheung YF, Chow PC, Chan GC, Ha SY (2006) Carotid intima–media thickness is increased and related to arterial stiffening in patients with beta-thalassaemia major. Br J Haematol 135:732–734 doi: 10.1111/j.1365-2141.2006.06349.x

Hahalis G, Kremastinos DT, Terzis G, Kalogeropoulos AP, Chrysanthopoulou A, Karakantza M, Kourakli A, Adamopoulos S, Tselepis AD, Grapsas N, Siablis D, Zoumbos NC, Alexopoulos D (2008) Global vasomotor dysfunction and accelerated vascular aging in beta-thalassemia major. Atherosclerosis 198:448–457 doi: 10.1016/j.atherosclerosis.2007.09.030

Kyriakou DS, Alexandrakis MG, Kyriakou ES, Liapi D, Kourelis TV, Passam F, Papadakis A (2001) Activated peripheral blood and endothelial cells in thalassemia patients. Ann Hematol 80:577–583 doi: 10.1007/s002770100355

Rosenzwieg A (2005) Circulation endothelial progenitors—cells as biomarkers. N Engl J Med 353:1055–1056 doi: 10.1056/NEJMe058134

Heiss C, Keymel S, Niesler U, Ziemann J, Kelm M, Kalka C (2005) Impaired progenitor cell activity in age-related endothelial dysfunction. J Am Coll Cardiol 45:1441–1448 doi: 10.1016/j.jacc.2004.12.074

Imanishi T, Hano T, Nishio I (2005) Angiotensin II accelerates endothelial progenitor cell senescence through induction of oxidative stress. J Hypertens 23:97–104 doi: 10.1097/00004872-200501000-00018

Yoder MC (2010) Is endothelium the origin of endothelial progenitor cells? Arterioscler Thromb Vasc Biol 30:1094–1103 doi: 10.1161/ATVBAHA.109.191635

Timmermans F, Plum J, Yöder MC, Ingram DA, Vandekerckhove B, Case J (2009) Endothelial progenitor cells: identity defined? J Cell Mol Med 13:87–102 doi: 10.1111/j.1582-4934.2008.00598.x

Fadini GP, Miorin M, Facco M, Bonamico S, Baesso I, Grego F, Menegolo M, de Kreutzenberg SV, Tiengo A, Agostini C, Avogaro A (2005) Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. J Am Coll Cardiol 45:1449–1457 doi: 10.1016/j.jacc.2004.11.067

Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348:593–600 doi: 10.1056/NEJMoa022287

Fadini GP, Coracina A, Baesso I, Agostini C, Tiengo A, Avogaro A, de Kreutzenberg SV (2006) Peripheral blood CD34+KDR+ endothelial progenitor cells are determinants of subclinical atherosclerosis in a middle-aged general population. Stroke 37:2277–2282 doi: 10.1161/01.STR.0000236064.19293.79

Kunz GA, Liang G, Cuculi F, Gregg D, Vata KC, Shaw LK, Goldschmidt-Clermont PJ, Dong C, Taylor DA, Peterson ED (2006) Circulating endothelial progenitor cells predict coronary artery disease severity. Am Heart J 152:190–195 doi: 10.1016/j.ahj.2006.02.001

Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A, Bohm M, Nickenig G (2005) Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 353:999–1007 doi: 10.1056/NEJMoa043814

Aggeli C, Antoniades C, Cosma C, Chrysohoou C, Tousoulis D, Ladis V, Karageorga M, Pitsavos C, Stefanadis C (2005) Endothelial dysfunction and inflammatory process in transfusion-dependent patients with beta-thalassemia major. Int J Cardiol 105:80–84 doi: 10.1016/j.ijcard.2004.12.025

Limsuwan A, Tubtom D, Pakakasama S, Chaunsumrit A (2009) Comparison of vascular complications between conventional treatment and bone marrow transplantation for children with beta-thalassemia disease. Pediatr Cardiol 30:777–780 doi: 10.1007/s00246-009-9436-z

de Witte T (2008) The role of iron in patients after bone marrow transplantation. Blood Rev 22(Suppl 2):S22–S28 doi: 10.1016/S0268-960X(08)70005-5

Evens AM, Mehta J, Gordon LI (2004) Rust and corrosion in hematopoietic stem cell transplantation: the problem of iron and oxidative stress. Bone Marrow Transplant 34:561–571 doi: 10.1038/sj.bmt.1704591

Rodriguez-Crespo I, Nishida CR, Knudsen GM, de Montellano PR (1999) Mutation of the five conserved histidines in the endothelial nitric-oxide synthase hemoprotein domain. No evidence for a non-heme metal requirement for catalysis. J Biol Chem 274:21617–21624 doi: 10.1074/jbc.274.31.21617

Leone AM, Valgimigli M, Giannico MB, Zaccone V, Perfetti M, D’Amario D, Rebuzzi AG, Crea F (2009) From bone marrow to the arterial wall: the ongoing tale of endothelial progenitor cells. Eur Heart J 30:890–899 doi: 10.1093/eurheartj/ehp078

Heeschen C, Aicher A, Lehmann R, Fichtlscherer S, Vasa M, Urbich C, Mildner-Rihm C, Martin H, Zeiher AM, Dimmeler S (2003) Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood 102:1340–1346 doi: 10.1182/blood-2003-01-0223

Bahlmann FH, De Groot K, Spandau JM, Landry AL, Hertel B, Duckert T, Boehm SM, Menne J, Haller H, Fliser D (2004) Erythropoietin regulates endothelial progenitor cells. Blood 103:921–926 doi: 10.1182/blood-2003-04-1284

Anning PB, Chen Y, Lamb NJ, Mumby S, Quinlan GJ, Evans TW, Gutteridge JM (1999) Iron overload upregulates haem oxygenase 1 in the lung more rapidly than in other tissues. FEBS Lett 447:111–114 doi: 10.1016/S0014-5793(99)00250-1

Wu BJ, Midwinter RG, Cassano C, Beck K, Wang Y, Changsiri D, Gamble JR, Stocker R (2009) Heme oxygenase-1 increases endothelial progenitor cells. Arterioscler Thromb Vasc Biol 29:1537–1542 doi: 10.1161/ATVBAHA.109.184713

Shantsila E, Watson T, Tse HF, Lip GY (2007) Endothelial colony forming units: are they a reliable marker of endothelial progenitor cell numbers? Ann Med 39:474–479 doi: 10.1080/07853890701329283

Tura O, Barclay GR, Roddie H, Davies J, Turner ML (2007) Absence of a relationship between immunophenotypic and colony enumeration analysis of endothelial progenitor cells in clinical haematopoietic cell sources. J Transl Med 5:37 doi: 10.1186/1479-5876-5-37

Stakos DA, Tavridou A, Margaritis D, Tziakas DN, Kotsianidis I, Chalikias GK, Tsatalas K, Bourikas G, Manolopoulos VG, Boudoulas H (2009) Oxidised low-density lipoprotein and arterial function in beta-thalassemia major. Eur J Haematol 82:477–483 doi: 10.1111/j.1600-0609.2009.01236.x

Case J, Ingram DA, Haneline LS (2008) Oxidative stress impairs endothelial progenitor cell function. Antioxid Redox Signal 10:1895–1907 doi: 10.1089/ars.2008.2118

He T, Peterson TE, Holmuhamedov EL, Terzic A, Caplice NM, Oberley LW, Katusic ZS (2004) Human endothelial progenitor cells tolerate oxidative stress due to intrinsically high expression of manganese superoxide dismutase. Arterioscler Thromb Vasc Biol 24:2021–2027 doi: 10.1161/01.ATV.0000142810.27849.8f

Hoetzer GL, Van Guilder GP, Irmiger HM, Keith RS, Stauffer BL, DeSouza CA (2007) Aging, exercise, and endothelial progenitor cell clonogenic and migratory capacity in men. J Appl Physiol 102:847–852 doi: 10.1152/japplphysiol.01183.2006

Celermajer DS, Sorensen KE, Spiegelhalter DJ, Georgakopoulos D, Robinson J, Deanfield JE (1994) Aging is associated with endothelial dysfunction in healthy men years before the age-related decline in women. J Am Coll Cardiol 24:471–476 doi: 10.1016/0735-1097(94)90305-0

 

DC FieldValueLanguage
dc.contributor.authorCheung, YFen_US
dc.contributor.authorChan, Sen_US
dc.contributor.authorYang, Men_US
dc.contributor.authorYe, JYen_US
dc.contributor.authorHa, SYen_US
dc.contributor.authorWong, SJen_US
dc.contributor.authorChan, GCFen_US
dc.date.accessioned2012-02-21T05:42:57Z-
dc.date.available2012-02-21T05:42:57Z-
dc.date.issued2011en_US
dc.identifier.citationAnnals of Hematology, 2011, v. 91, n. 3, p. 345-352en_US
dc.identifier.issn0939-5555en_US
dc.identifier.urihttp://hdl.handle.net/10722/144928-
dc.description.abstractArterial dysfunction has been documented in patients with beta-thalassaemia major. This study aimed to determine the quantity and proliferative capacity of circulating CD133+VEGFR2+ and CD34+VEGFR2+ cells in patients with beta-thalassaemia major and those after haematopoietic stem cell transplantation (HSCT), and their relationships with arterial function. Brachial arterial flow-mediated dilation (FMD), carotid arterial stiffness, the quantity of these circulating cells and their number of colony-forming units (CFUs) were determined in 17 transfusion-dependent thalassaemia patients, 14 patients after HSCT and 11 controls. Compared with controls, both patient groups had significantly lower FMD and greater arterial stiffness. Despite having increased CD133+VEGFR2+ and CD34+VEGFR2+ cells, transfusion-dependent patients had significantly reduced CFUs compared with controls (p = 0.002). There was a trend of increasing CFUs across the three groups with decreasing iron load (p = 0.011). The CFUs correlated with brachial FMD (p = 0.029) and arterial stiffness (p = 0.02), but not with serum ferritin level. Multiple linear regression showed that CFU was a significant determinant of FMD (p = 0.043) and arterial stiffness (p = 0.02) after adjustment of age, sex, body mass index, blood pressure and serum ferritin level. In conclusion, arterial dysfunction found in patients with beta-thalassaemia major before and after HSCT may be related to impaired proliferation of CD133+VEGFR2+ and CD34+VEGFR2+ cells. © 2011 The Author(s).en_US
dc.languageengen_US
dc.publisherSpringer Berlin / Heidelbergen_US
dc.relation.ispartofAnnals of Hematologyen_US
dc.rightsThe Author(s)en_US
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.en_US
dc.subjectMedicine & Public Healthen_US
dc.subjectHematologyen_US
dc.subjectOncologyen_US
dc.titleCirculating CD133 +VEGFR2 + and CD34 +VEGFR2 + cells and arterial function in patients with beta-thalassaemia majoren_US
dc.typeArticleen_US
dc.identifier.openurlhttp://library.hku.hk:4551/resserv?sid=springerlink&genre=article&atitle=Circulating CD133<sup>+</sup>VEGFR2<sup>+</sup> and CD34<sup>+</sup>VEGFR2<sup>+</sup> cells and arterial function in patients with beta-thalassaemia major&title=Annals of Hematology&issn=09395555&date=2012-03-01&volume=91&issue=3& spage=345&authors=Yiu-fai Cheung, Shing Chan, Mo Yang, <i>et al.</i>en_US
dc.identifier.emailCheung, YF:xfcheung@hku.hk-
dc.identifier.emailChan, GCF:gcfchan@hkucc.hku.hk-
dc.identifier.authorityCheung, YF=rp00382-
dc.identifier.authorityChan, GCF=rp00431-
dc.description.naturepublished_or_final_versionen_US
dc.identifier.doi10.1007/s00277-011-1302-4en_US
dc.identifier.pmid21808992-
dc.identifier.pmcidPMC3274669-
dc.identifier.scopuseid_2-s2.0-84857363739-
dc.identifier.hkuros191927-
dc.identifier.hkuros198730-
dc.relation.referencesCheung YF, Chan GC, Ha SY (2002) Arterial stiffness and endothelial function in patients with beta-thalassemia major. Circulation 106:2561–2566en_US
dc.relation.referencesdoi: 10.1161/01.CIR.0000037225.92759.A7en_US
dc.relation.referencesGedikli O, Altinbas A, Orucoglu A, Dogan A, Ozaydin M, Aslan SM, Acar G, Canatan D (2007) Elastic properties of the ascending aorta in patients with beta-thalassemia major. Echocardiography 24:830–836en_US
dc.relation.referencesdoi: 10.1111/j.1540-8175.2007.00486.xen_US
dc.relation.referencesUlger Z, Aydinok Y, Gurses D, Levent E, Ozyurek AR (2006) Stiffness of the abdominal aorta in beta-thalassemia major patients related with body iron load. J Pediatr Hematol Oncol 28:647–652en_US
dc.relation.referencesdoi: 10.1097/01.mph.0000212987.18694.5aen_US
dc.relation.referencesCheung YF, Ha SY, Chan GC (2005) Ventriculo-vascular interactions in patients with beta thalassaemia major. Heart 91:769–773en_US
dc.relation.referencesdoi: 10.1136/hrt.2003.032110en_US
dc.relation.referencesCheung YF, Chow PC, Chan GC, Ha SY (2006) Carotid intima–media thickness is increased and related to arterial stiffening in patients with beta-thalassaemia major. Br J Haematol 135:732–734en_US
dc.relation.referencesdoi: 10.1111/j.1365-2141.2006.06349.xen_US
dc.relation.referencesHahalis G, Kremastinos DT, Terzis G, Kalogeropoulos AP, Chrysanthopoulou A, Karakantza M, Kourakli A, Adamopoulos S, Tselepis AD, Grapsas N, Siablis D, Zoumbos NC, Alexopoulos D (2008) Global vasomotor dysfunction and accelerated vascular aging in beta-thalassemia major. Atherosclerosis 198:448–457en_US
dc.relation.referencesdoi: 10.1016/j.atherosclerosis.2007.09.030en_US
dc.relation.referencesKyriakou DS, Alexandrakis MG, Kyriakou ES, Liapi D, Kourelis TV, Passam F, Papadakis A (2001) Activated peripheral blood and endothelial cells in thalassemia patients. Ann Hematol 80:577–583en_US
dc.relation.referencesdoi: 10.1007/s002770100355en_US
dc.relation.referencesRosenzwieg A (2005) Circulation endothelial progenitors—cells as biomarkers. N Engl J Med 353:1055–1056en_US
dc.relation.referencesdoi: 10.1056/NEJMe058134en_US
dc.relation.referencesHeiss C, Keymel S, Niesler U, Ziemann J, Kelm M, Kalka C (2005) Impaired progenitor cell activity in age-related endothelial dysfunction. J Am Coll Cardiol 45:1441–1448en_US
dc.relation.referencesdoi: 10.1016/j.jacc.2004.12.074en_US
dc.relation.referencesLivrea MA, Tesoriere L, Pintaudi AM, Calabrese A, Maggio A, Freisleben HJ, D’Arpa D, D’Anna R, Bongiorno A (1996) Oxidative stress and antioxidant status in beta-thalassemia major: iron overload and depletion of lipid-soluble antioxidants. Blood 88:3608–3614en_US
dc.relation.referencesDay SM, Duquaine D, Mundada LV, Menon RG, Khan BV, Rajagopalan S, Fay WP (2003) Chronic iron administration increases vascular oxidative stress and accelerates arterial thrombosis. Circulation 107:2601–2606en_US
dc.relation.referencesImanishi T, Hano T, Nishio I (2005) Angiotensin II accelerates endothelial progenitor cell senescence through induction of oxidative stress. J Hypertens 23:97–104en_US
dc.relation.referencesdoi: 10.1097/00004872-200501000-00018en_US
dc.relation.referencesYoder MC, Ingram DA (2009) The definition of EPCs and other bone marrow cells contributing to neoangiogenesis and tumor growth: is there common ground for understanding the roles of numerous marrow-derived cells in the neoangiogenic process? Biochim Biophys Acta 1796:50–54en_US
dc.relation.referencesYoder MC (2010) Is endothelium the origin of endothelial progenitor cells? Arterioscler Thromb Vasc Biol 30:1094–1103en_US
dc.relation.referencesdoi: 10.1161/ATVBAHA.109.191635en_US
dc.relation.referencesTimmermans F, Plum J, Yöder MC, Ingram DA, Vandekerckhove B, Case J (2009) Endothelial progenitor cells: identity defined? J Cell Mol Med 13:87–102en_US
dc.relation.referencesdoi: 10.1111/j.1582-4934.2008.00598.xen_US
dc.relation.referencesFadini GP, Miorin M, Facco M, Bonamico S, Baesso I, Grego F, Menegolo M, de Kreutzenberg SV, Tiengo A, Agostini C, Avogaro A (2005) Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. J Am Coll Cardiol 45:1449–1457en_US
dc.relation.referencesdoi: 10.1016/j.jacc.2004.11.067en_US
dc.relation.referencesHill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348:593–600en_US
dc.relation.referencesdoi: 10.1056/NEJMoa022287en_US
dc.relation.referencesFadini GP, Coracina A, Baesso I, Agostini C, Tiengo A, Avogaro A, de Kreutzenberg SV (2006) Peripheral blood CD34+KDR+ endothelial progenitor cells are determinants of subclinical atherosclerosis in a middle-aged general population. Stroke 37:2277–2282en_US
dc.relation.referencesdoi: 10.1161/01.STR.0000236064.19293.79en_US
dc.relation.referencesKunz GA, Liang G, Cuculi F, Gregg D, Vata KC, Shaw LK, Goldschmidt-Clermont PJ, Dong C, Taylor DA, Peterson ED (2006) Circulating endothelial progenitor cells predict coronary artery disease severity. Am Heart J 152:190–195en_US
dc.relation.referencesdoi: 10.1016/j.ahj.2006.02.001en_US
dc.relation.referencesWerner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A, Bohm M, Nickenig G (2005) Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 353:999–1007en_US
dc.relation.referencesdoi: 10.1056/NEJMoa043814en_US
dc.relation.referencesAggeli C, Antoniades C, Cosma C, Chrysohoou C, Tousoulis D, Ladis V, Karageorga M, Pitsavos C, Stefanadis C (2005) Endothelial dysfunction and inflammatory process in transfusion-dependent patients with beta-thalassemia major. Int J Cardiol 105:80–84en_US
dc.relation.referencesdoi: 10.1016/j.ijcard.2004.12.025en_US
dc.relation.referencesLimsuwan A, Tubtom D, Pakakasama S, Chaunsumrit A (2009) Comparison of vascular complications between conventional treatment and bone marrow transplantation for children with beta-thalassemia disease. Pediatr Cardiol 30:777–780en_US
dc.relation.referencesdoi: 10.1007/s00246-009-9436-zen_US
dc.relation.referencesde Witte T (2008) The role of iron in patients after bone marrow transplantation. Blood Rev 22(Suppl 2):S22–S28en_US
dc.relation.referencesdoi: 10.1016/S0268-960X(08)70005-5en_US
dc.relation.referencesEvens AM, Mehta J, Gordon LI (2004) Rust and corrosion in hematopoietic stem cell transplantation: the problem of iron and oxidative stress. Bone Marrow Transplant 34:561–571en_US
dc.relation.referencesdoi: 10.1038/sj.bmt.1704591en_US
dc.relation.referencesRodriguez-Crespo I, Nishida CR, Knudsen GM, de Montellano PR (1999) Mutation of the five conserved histidines in the endothelial nitric-oxide synthase hemoprotein domain. No evidence for a non-heme metal requirement for catalysis. J Biol Chem 274:21617–21624en_US
dc.relation.referencesdoi: 10.1074/jbc.274.31.21617en_US
dc.relation.referencesSmith JB, Selak MA, Dangelmaier C, Daniel JL (1992) Cytosolic calcium as a second messenger for collagen-induced platelet responses. Biochem J 288(Pt 3):925–929en_US
dc.relation.referencesButthep P, Khuhapinant A, Bunyaratvej A, Fucharoen S, Kitaguchi H, Funahara Y (1997) Thalassemic serum inhibits endothelial cell mitosis in vitro. Southeast Asian J Trop Med Public Health 28(Suppl 3):155–160en_US
dc.relation.referencesBanjerdpongchai R, Wilairat P, Fucharoen S, Bunyaratvej A (1997) Morphological alterations and apoptosis of endothelial cells induced by thalassemic serum in vitro. Southeast Asian J Trop Med Public Health 28(Suppl 3):149–154en_US
dc.relation.referencesLeone AM, Valgimigli M, Giannico MB, Zaccone V, Perfetti M, D’Amario D, Rebuzzi AG, Crea F (2009) From bone marrow to the arterial wall: the ongoing tale of endothelial progenitor cells. Eur Heart J 30:890–899en_US
dc.relation.referencesdoi: 10.1093/eurheartj/ehp078en_US
dc.relation.referencesChaisiripoomkere W, Jootar S, Chanjarunee S, Ungkanont A (1999) Serum erythropoietin levels in thalassemia major and intermedia. Southeast Asian J Trop Med Public Health 30:786–788en_US
dc.relation.referencesHeeschen C, Aicher A, Lehmann R, Fichtlscherer S, Vasa M, Urbich C, Mildner-Rihm C, Martin H, Zeiher AM, Dimmeler S (2003) Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood 102:1340–1346en_US
dc.relation.referencesdoi: 10.1182/blood-2003-01-0223en_US
dc.relation.referencesBahlmann FH, De Groot K, Spandau JM, Landry AL, Hertel B, Duckert T, Boehm SM, Menne J, Haller H, Fliser D (2004) Erythropoietin regulates endothelial progenitor cells. Blood 103:921–926en_US
dc.relation.referencesdoi: 10.1182/blood-2003-04-1284en_US
dc.relation.referencesAnning PB, Chen Y, Lamb NJ, Mumby S, Quinlan GJ, Evans TW, Gutteridge JM (1999) Iron overload upregulates haem oxygenase 1 in the lung more rapidly than in other tissues. FEBS Lett 447:111–114en_US
dc.relation.referencesdoi: 10.1016/S0014-5793(99)00250-1en_US
dc.relation.referencesWu BJ, Midwinter RG, Cassano C, Beck K, Wang Y, Changsiri D, Gamble JR, Stocker R (2009) Heme oxygenase-1 increases endothelial progenitor cells. Arterioscler Thromb Vasc Biol 29:1537–1542en_US
dc.relation.referencesdoi: 10.1161/ATVBAHA.109.184713en_US
dc.relation.referencesShantsila E, Watson T, Tse HF, Lip GY (2007) Endothelial colony forming units: are they a reliable marker of endothelial progenitor cell numbers? Ann Med 39:474–479en_US
dc.relation.referencesdoi: 10.1080/07853890701329283en_US
dc.relation.referencesTura O, Barclay GR, Roddie H, Davies J, Turner ML (2007) Absence of a relationship between immunophenotypic and colony enumeration analysis of endothelial progenitor cells in clinical haematopoietic cell sources. J Transl Med 5:37en_US
dc.relation.referencesdoi: 10.1186/1479-5876-5-37en_US
dc.relation.referencesStakos DA, Tavridou A, Margaritis D, Tziakas DN, Kotsianidis I, Chalikias GK, Tsatalas K, Bourikas G, Manolopoulos VG, Boudoulas H (2009) Oxidised low-density lipoprotein and arterial function in beta-thalassemia major. Eur J Haematol 82:477–483en_US
dc.relation.referencesdoi: 10.1111/j.1600-0609.2009.01236.xen_US
dc.relation.referencesCase J, Ingram DA, Haneline LS (2008) Oxidative stress impairs endothelial progenitor cell function. Antioxid Redox Signal 10:1895–1907en_US
dc.relation.referencesdoi: 10.1089/ars.2008.2118en_US
dc.relation.referencesHe T, Peterson TE, Holmuhamedov EL, Terzic A, Caplice NM, Oberley LW, Katusic ZS (2004) Human endothelial progenitor cells tolerate oxidative stress due to intrinsically high expression of manganese superoxide dismutase. Arterioscler Thromb Vasc Biol 24:2021–2027en_US
dc.relation.referencesdoi: 10.1161/01.ATV.0000142810.27849.8fen_US
dc.relation.referencesHoetzer GL, Van Guilder GP, Irmiger HM, Keith RS, Stauffer BL, DeSouza CA (2007) Aging, exercise, and endothelial progenitor cell clonogenic and migratory capacity in men. J Appl Physiol 102:847–852en_US
dc.relation.referencesdoi: 10.1152/japplphysiol.01183.2006en_US
dc.relation.referencesCelermajer DS, Sorensen KE, Spiegelhalter DJ, Georgakopoulos D, Robinson J, Deanfield JE (1994) Aging is associated with endothelial dysfunction in healthy men years before the age-related decline in women. J Am Coll Cardiol 24:471–476en_US
dc.relation.referencesdoi: 10.1016/0735-1097(94)90305-0en_US
dc.identifier.volume91en_US
dc.identifier.issue3en_US
dc.identifier.spage345en_US
dc.identifier.epage352en_US
dc.identifier.eissn1432-0584en_US
dc.identifier.isiWOS:000300280900004-
dc.description.otherSpringer Open Choice, 21 Feb 2012en_US
dc.identifier.scopusauthoridCheung, YF=7202111067-
dc.identifier.scopusauthoridChan, S=35071039700-
dc.identifier.scopusauthoridYang, M=7404927250-
dc.identifier.scopusauthoridYe, JY=23669624100-
dc.identifier.scopusauthoridHa, SY=7202501115-
dc.identifier.scopusauthoridWong, SJ=25924109100-
dc.identifier.scopusauthoridChan, GCF=16160154400-
dc.identifier.citeulike9631716-
dc.identifier.issnl0939-5555-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats