File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1007/s00277-011-1302-4
- Scopus: eid_2-s2.0-84857363739
- PMID: 21808992
- WOS: WOS:000300280900004
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Circulating CD133 +VEGFR2 + and CD34 +VEGFR2 + cells and arterial function in patients with beta-thalassaemia major
Title | Circulating CD133 +VEGFR2 + and CD34 +VEGFR2 + cells and arterial function in patients with beta-thalassaemia major | ||||
---|---|---|---|---|---|
Authors | |||||
Keywords | Medicine & Public Health Hematology Oncology | ||||
Issue Date | 2011 | ||||
Publisher | Springer Berlin / Heidelberg | ||||
Citation | Annals of Hematology, 2011, v. 91, n. 3, p. 345-352 How to Cite? | ||||
Abstract | Arterial dysfunction has been documented in patients with beta-thalassaemia major. This study aimed to determine the quantity and proliferative capacity of circulating CD133+VEGFR2+ and CD34+VEGFR2+ cells in patients with beta-thalassaemia major and those after haematopoietic stem cell transplantation (HSCT), and their relationships with arterial function. Brachial arterial flow-mediated dilation (FMD), carotid arterial stiffness, the quantity of these circulating cells and their number of colony-forming units (CFUs) were determined in 17 transfusion-dependent thalassaemia patients, 14 patients after HSCT and 11 controls. Compared with controls, both patient groups had significantly lower FMD and greater arterial stiffness. Despite having increased CD133+VEGFR2+ and CD34+VEGFR2+ cells, transfusion-dependent patients had significantly reduced CFUs compared with controls (p = 0.002). There was a trend of increasing CFUs across the three groups with decreasing iron load (p = 0.011). The CFUs correlated with brachial FMD (p = 0.029) and arterial stiffness (p = 0.02), but not with serum ferritin level. Multiple linear regression showed that CFU was a significant determinant of FMD (p = 0.043) and arterial stiffness (p = 0.02) after adjustment of age, sex, body mass index, blood pressure and serum ferritin level. In conclusion, arterial dysfunction found in patients with beta-thalassaemia major before and after HSCT may be related to impaired proliferation of CD133+VEGFR2+ and CD34+VEGFR2+ cells. © 2011 The Author(s). | ||||
Persistent Identifier | http://hdl.handle.net/10722/144928 | ||||
ISSN | 2023 Impact Factor: 3.0 2023 SCImago Journal Rankings: 0.912 | ||||
PubMed Central ID | |||||
ISI Accession Number ID |
Funding Information: The authors are grateful to the Children's Thalassaemia Foundation for funding this work | ||||
References | Cheung YF, Chan GC, Ha SY (2002) Arterial stiffness and endothelial function in patients with beta-thalassemia major. Circulation 106:2561–2566 doi: 10.1161/01.CIR.0000037225.92759.A7 Gedikli O, Altinbas A, Orucoglu A, Dogan A, Ozaydin M, Aslan SM, Acar G, Canatan D (2007) Elastic properties of the ascending aorta in patients with beta-thalassemia major. Echocardiography 24:830–836 doi: 10.1111/j.1540-8175.2007.00486.x Ulger Z, Aydinok Y, Gurses D, Levent E, Ozyurek AR (2006) Stiffness of the abdominal aorta in beta-thalassemia major patients related with body iron load. J Pediatr Hematol Oncol 28:647–652 doi: 10.1097/01.mph.0000212987.18694.5a Cheung YF, Ha SY, Chan GC (2005) Ventriculo-vascular interactions in patients with beta thalassaemia major. Heart 91:769–773 doi: 10.1136/hrt.2003.032110 Cheung YF, Chow PC, Chan GC, Ha SY (2006) Carotid intima–media thickness is increased and related to arterial stiffening in patients with beta-thalassaemia major. Br J Haematol 135:732–734 doi: 10.1111/j.1365-2141.2006.06349.x Hahalis G, Kremastinos DT, Terzis G, Kalogeropoulos AP, Chrysanthopoulou A, Karakantza M, Kourakli A, Adamopoulos S, Tselepis AD, Grapsas N, Siablis D, Zoumbos NC, Alexopoulos D (2008) Global vasomotor dysfunction and accelerated vascular aging in beta-thalassemia major. Atherosclerosis 198:448–457 doi: 10.1016/j.atherosclerosis.2007.09.030 Kyriakou DS, Alexandrakis MG, Kyriakou ES, Liapi D, Kourelis TV, Passam F, Papadakis A (2001) Activated peripheral blood and endothelial cells in thalassemia patients. Ann Hematol 80:577–583 doi: 10.1007/s002770100355 Rosenzwieg A (2005) Circulation endothelial progenitors—cells as biomarkers. N Engl J Med 353:1055–1056 doi: 10.1056/NEJMe058134 Heiss C, Keymel S, Niesler U, Ziemann J, Kelm M, Kalka C (2005) Impaired progenitor cell activity in age-related endothelial dysfunction. J Am Coll Cardiol 45:1441–1448 doi: 10.1016/j.jacc.2004.12.074 Imanishi T, Hano T, Nishio I (2005) Angiotensin II accelerates endothelial progenitor cell senescence through induction of oxidative stress. J Hypertens 23:97–104 doi: 10.1097/00004872-200501000-00018 Yoder MC (2010) Is endothelium the origin of endothelial progenitor cells? Arterioscler Thromb Vasc Biol 30:1094–1103 doi: 10.1161/ATVBAHA.109.191635 Timmermans F, Plum J, Yöder MC, Ingram DA, Vandekerckhove B, Case J (2009) Endothelial progenitor cells: identity defined? J Cell Mol Med 13:87–102 doi: 10.1111/j.1582-4934.2008.00598.x Fadini GP, Miorin M, Facco M, Bonamico S, Baesso I, Grego F, Menegolo M, de Kreutzenberg SV, Tiengo A, Agostini C, Avogaro A (2005) Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. J Am Coll Cardiol 45:1449–1457 doi: 10.1016/j.jacc.2004.11.067 Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348:593–600 doi: 10.1056/NEJMoa022287 Fadini GP, Coracina A, Baesso I, Agostini C, Tiengo A, Avogaro A, de Kreutzenberg SV (2006) Peripheral blood CD34+KDR+ endothelial progenitor cells are determinants of subclinical atherosclerosis in a middle-aged general population. Stroke 37:2277–2282 doi: 10.1161/01.STR.0000236064.19293.79 Kunz GA, Liang G, Cuculi F, Gregg D, Vata KC, Shaw LK, Goldschmidt-Clermont PJ, Dong C, Taylor DA, Peterson ED (2006) Circulating endothelial progenitor cells predict coronary artery disease severity. Am Heart J 152:190–195 doi: 10.1016/j.ahj.2006.02.001 Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A, Bohm M, Nickenig G (2005) Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 353:999–1007 doi: 10.1056/NEJMoa043814 Aggeli C, Antoniades C, Cosma C, Chrysohoou C, Tousoulis D, Ladis V, Karageorga M, Pitsavos C, Stefanadis C (2005) Endothelial dysfunction and inflammatory process in transfusion-dependent patients with beta-thalassemia major. Int J Cardiol 105:80–84 doi: 10.1016/j.ijcard.2004.12.025 Limsuwan A, Tubtom D, Pakakasama S, Chaunsumrit A (2009) Comparison of vascular complications between conventional treatment and bone marrow transplantation for children with beta-thalassemia disease. Pediatr Cardiol 30:777–780 doi: 10.1007/s00246-009-9436-z de Witte T (2008) The role of iron in patients after bone marrow transplantation. Blood Rev 22(Suppl 2):S22–S28 doi: 10.1016/S0268-960X(08)70005-5 Evens AM, Mehta J, Gordon LI (2004) Rust and corrosion in hematopoietic stem cell transplantation: the problem of iron and oxidative stress. Bone Marrow Transplant 34:561–571 doi: 10.1038/sj.bmt.1704591 Rodriguez-Crespo I, Nishida CR, Knudsen GM, de Montellano PR (1999) Mutation of the five conserved histidines in the endothelial nitric-oxide synthase hemoprotein domain. No evidence for a non-heme metal requirement for catalysis. J Biol Chem 274:21617–21624 doi: 10.1074/jbc.274.31.21617 Leone AM, Valgimigli M, Giannico MB, Zaccone V, Perfetti M, D’Amario D, Rebuzzi AG, Crea F (2009) From bone marrow to the arterial wall: the ongoing tale of endothelial progenitor cells. Eur Heart J 30:890–899 doi: 10.1093/eurheartj/ehp078 Heeschen C, Aicher A, Lehmann R, Fichtlscherer S, Vasa M, Urbich C, Mildner-Rihm C, Martin H, Zeiher AM, Dimmeler S (2003) Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood 102:1340–1346 doi: 10.1182/blood-2003-01-0223 Bahlmann FH, De Groot K, Spandau JM, Landry AL, Hertel B, Duckert T, Boehm SM, Menne J, Haller H, Fliser D (2004) Erythropoietin regulates endothelial progenitor cells. Blood 103:921–926 doi: 10.1182/blood-2003-04-1284 Anning PB, Chen Y, Lamb NJ, Mumby S, Quinlan GJ, Evans TW, Gutteridge JM (1999) Iron overload upregulates haem oxygenase 1 in the lung more rapidly than in other tissues. FEBS Lett 447:111–114 doi: 10.1016/S0014-5793(99)00250-1 Wu BJ, Midwinter RG, Cassano C, Beck K, Wang Y, Changsiri D, Gamble JR, Stocker R (2009) Heme oxygenase-1 increases endothelial progenitor cells. Arterioscler Thromb Vasc Biol 29:1537–1542 doi: 10.1161/ATVBAHA.109.184713 Shantsila E, Watson T, Tse HF, Lip GY (2007) Endothelial colony forming units: are they a reliable marker of endothelial progenitor cell numbers? Ann Med 39:474–479 doi: 10.1080/07853890701329283 Tura O, Barclay GR, Roddie H, Davies J, Turner ML (2007) Absence of a relationship between immunophenotypic and colony enumeration analysis of endothelial progenitor cells in clinical haematopoietic cell sources. J Transl Med 5:37 doi: 10.1186/1479-5876-5-37 Stakos DA, Tavridou A, Margaritis D, Tziakas DN, Kotsianidis I, Chalikias GK, Tsatalas K, Bourikas G, Manolopoulos VG, Boudoulas H (2009) Oxidised low-density lipoprotein and arterial function in beta-thalassemia major. Eur J Haematol 82:477–483 doi: 10.1111/j.1600-0609.2009.01236.x Case J, Ingram DA, Haneline LS (2008) Oxidative stress impairs endothelial progenitor cell function. Antioxid Redox Signal 10:1895–1907 doi: 10.1089/ars.2008.2118 He T, Peterson TE, Holmuhamedov EL, Terzic A, Caplice NM, Oberley LW, Katusic ZS (2004) Human endothelial progenitor cells tolerate oxidative stress due to intrinsically high expression of manganese superoxide dismutase. Arterioscler Thromb Vasc Biol 24:2021–2027 doi: 10.1161/01.ATV.0000142810.27849.8f Hoetzer GL, Van Guilder GP, Irmiger HM, Keith RS, Stauffer BL, DeSouza CA (2007) Aging, exercise, and endothelial progenitor cell clonogenic and migratory capacity in men. J Appl Physiol 102:847–852 doi: 10.1152/japplphysiol.01183.2006 Celermajer DS, Sorensen KE, Spiegelhalter DJ, Georgakopoulos D, Robinson J, Deanfield JE (1994) Aging is associated with endothelial dysfunction in healthy men years before the age-related decline in women. J Am Coll Cardiol 24:471–476 doi: 10.1016/0735-1097(94)90305-0 |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cheung, YF | en_US |
dc.contributor.author | Chan, S | en_US |
dc.contributor.author | Yang, M | en_US |
dc.contributor.author | Ye, JY | en_US |
dc.contributor.author | Ha, SY | en_US |
dc.contributor.author | Wong, SJ | en_US |
dc.contributor.author | Chan, GCF | en_US |
dc.date.accessioned | 2012-02-21T05:42:57Z | - |
dc.date.available | 2012-02-21T05:42:57Z | - |
dc.date.issued | 2011 | en_US |
dc.identifier.citation | Annals of Hematology, 2011, v. 91, n. 3, p. 345-352 | en_US |
dc.identifier.issn | 0939-5555 | en_US |
dc.identifier.uri | http://hdl.handle.net/10722/144928 | - |
dc.description.abstract | Arterial dysfunction has been documented in patients with beta-thalassaemia major. This study aimed to determine the quantity and proliferative capacity of circulating CD133+VEGFR2+ and CD34+VEGFR2+ cells in patients with beta-thalassaemia major and those after haematopoietic stem cell transplantation (HSCT), and their relationships with arterial function. Brachial arterial flow-mediated dilation (FMD), carotid arterial stiffness, the quantity of these circulating cells and their number of colony-forming units (CFUs) were determined in 17 transfusion-dependent thalassaemia patients, 14 patients after HSCT and 11 controls. Compared with controls, both patient groups had significantly lower FMD and greater arterial stiffness. Despite having increased CD133+VEGFR2+ and CD34+VEGFR2+ cells, transfusion-dependent patients had significantly reduced CFUs compared with controls (p = 0.002). There was a trend of increasing CFUs across the three groups with decreasing iron load (p = 0.011). The CFUs correlated with brachial FMD (p = 0.029) and arterial stiffness (p = 0.02), but not with serum ferritin level. Multiple linear regression showed that CFU was a significant determinant of FMD (p = 0.043) and arterial stiffness (p = 0.02) after adjustment of age, sex, body mass index, blood pressure and serum ferritin level. In conclusion, arterial dysfunction found in patients with beta-thalassaemia major before and after HSCT may be related to impaired proliferation of CD133+VEGFR2+ and CD34+VEGFR2+ cells. © 2011 The Author(s). | en_US |
dc.language | eng | en_US |
dc.publisher | Springer Berlin / Heidelberg | en_US |
dc.relation.ispartof | Annals of Hematology | en_US |
dc.rights | The Author(s) | en_US |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | en_US |
dc.subject | Medicine & Public Health | en_US |
dc.subject | Hematology | en_US |
dc.subject | Oncology | en_US |
dc.title | Circulating CD133 +VEGFR2 + and CD34 +VEGFR2 + cells and arterial function in patients with beta-thalassaemia major | en_US |
dc.type | Article | en_US |
dc.identifier.openurl | http://library.hku.hk:4551/resserv?sid=springerlink&genre=article&atitle=Circulating CD133<sup>+</sup>VEGFR2<sup>+</sup> and CD34<sup>+</sup>VEGFR2<sup>+</sup> cells and arterial function in patients with beta-thalassaemia major&title=Annals of Hematology&issn=09395555&date=2012-03-01&volume=91&issue=3& spage=345&authors=Yiu-fai Cheung, Shing Chan, Mo Yang, <i>et al.</i> | en_US |
dc.identifier.email | Cheung, YF:xfcheung@hku.hk | - |
dc.identifier.email | Chan, GCF:gcfchan@hkucc.hku.hk | - |
dc.identifier.authority | Cheung, YF=rp00382 | - |
dc.identifier.authority | Chan, GCF=rp00431 | - |
dc.description.nature | published_or_final_version | en_US |
dc.identifier.doi | 10.1007/s00277-011-1302-4 | en_US |
dc.identifier.pmid | 21808992 | - |
dc.identifier.pmcid | PMC3274669 | - |
dc.identifier.scopus | eid_2-s2.0-84857363739 | - |
dc.identifier.hkuros | 191927 | - |
dc.identifier.hkuros | 198730 | - |
dc.relation.references | Cheung YF, Chan GC, Ha SY (2002) Arterial stiffness and endothelial function in patients with beta-thalassemia major. Circulation 106:2561–2566 | en_US |
dc.relation.references | doi: 10.1161/01.CIR.0000037225.92759.A7 | en_US |
dc.relation.references | Gedikli O, Altinbas A, Orucoglu A, Dogan A, Ozaydin M, Aslan SM, Acar G, Canatan D (2007) Elastic properties of the ascending aorta in patients with beta-thalassemia major. Echocardiography 24:830–836 | en_US |
dc.relation.references | doi: 10.1111/j.1540-8175.2007.00486.x | en_US |
dc.relation.references | Ulger Z, Aydinok Y, Gurses D, Levent E, Ozyurek AR (2006) Stiffness of the abdominal aorta in beta-thalassemia major patients related with body iron load. J Pediatr Hematol Oncol 28:647–652 | en_US |
dc.relation.references | doi: 10.1097/01.mph.0000212987.18694.5a | en_US |
dc.relation.references | Cheung YF, Ha SY, Chan GC (2005) Ventriculo-vascular interactions in patients with beta thalassaemia major. Heart 91:769–773 | en_US |
dc.relation.references | doi: 10.1136/hrt.2003.032110 | en_US |
dc.relation.references | Cheung YF, Chow PC, Chan GC, Ha SY (2006) Carotid intima–media thickness is increased and related to arterial stiffening in patients with beta-thalassaemia major. Br J Haematol 135:732–734 | en_US |
dc.relation.references | doi: 10.1111/j.1365-2141.2006.06349.x | en_US |
dc.relation.references | Hahalis G, Kremastinos DT, Terzis G, Kalogeropoulos AP, Chrysanthopoulou A, Karakantza M, Kourakli A, Adamopoulos S, Tselepis AD, Grapsas N, Siablis D, Zoumbos NC, Alexopoulos D (2008) Global vasomotor dysfunction and accelerated vascular aging in beta-thalassemia major. Atherosclerosis 198:448–457 | en_US |
dc.relation.references | doi: 10.1016/j.atherosclerosis.2007.09.030 | en_US |
dc.relation.references | Kyriakou DS, Alexandrakis MG, Kyriakou ES, Liapi D, Kourelis TV, Passam F, Papadakis A (2001) Activated peripheral blood and endothelial cells in thalassemia patients. Ann Hematol 80:577–583 | en_US |
dc.relation.references | doi: 10.1007/s002770100355 | en_US |
dc.relation.references | Rosenzwieg A (2005) Circulation endothelial progenitors—cells as biomarkers. N Engl J Med 353:1055–1056 | en_US |
dc.relation.references | doi: 10.1056/NEJMe058134 | en_US |
dc.relation.references | Heiss C, Keymel S, Niesler U, Ziemann J, Kelm M, Kalka C (2005) Impaired progenitor cell activity in age-related endothelial dysfunction. J Am Coll Cardiol 45:1441–1448 | en_US |
dc.relation.references | doi: 10.1016/j.jacc.2004.12.074 | en_US |
dc.relation.references | Livrea MA, Tesoriere L, Pintaudi AM, Calabrese A, Maggio A, Freisleben HJ, D’Arpa D, D’Anna R, Bongiorno A (1996) Oxidative stress and antioxidant status in beta-thalassemia major: iron overload and depletion of lipid-soluble antioxidants. Blood 88:3608–3614 | en_US |
dc.relation.references | Day SM, Duquaine D, Mundada LV, Menon RG, Khan BV, Rajagopalan S, Fay WP (2003) Chronic iron administration increases vascular oxidative stress and accelerates arterial thrombosis. Circulation 107:2601–2606 | en_US |
dc.relation.references | Imanishi T, Hano T, Nishio I (2005) Angiotensin II accelerates endothelial progenitor cell senescence through induction of oxidative stress. J Hypertens 23:97–104 | en_US |
dc.relation.references | doi: 10.1097/00004872-200501000-00018 | en_US |
dc.relation.references | Yoder MC, Ingram DA (2009) The definition of EPCs and other bone marrow cells contributing to neoangiogenesis and tumor growth: is there common ground for understanding the roles of numerous marrow-derived cells in the neoangiogenic process? Biochim Biophys Acta 1796:50–54 | en_US |
dc.relation.references | Yoder MC (2010) Is endothelium the origin of endothelial progenitor cells? Arterioscler Thromb Vasc Biol 30:1094–1103 | en_US |
dc.relation.references | doi: 10.1161/ATVBAHA.109.191635 | en_US |
dc.relation.references | Timmermans F, Plum J, Yöder MC, Ingram DA, Vandekerckhove B, Case J (2009) Endothelial progenitor cells: identity defined? J Cell Mol Med 13:87–102 | en_US |
dc.relation.references | doi: 10.1111/j.1582-4934.2008.00598.x | en_US |
dc.relation.references | Fadini GP, Miorin M, Facco M, Bonamico S, Baesso I, Grego F, Menegolo M, de Kreutzenberg SV, Tiengo A, Agostini C, Avogaro A (2005) Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. J Am Coll Cardiol 45:1449–1457 | en_US |
dc.relation.references | doi: 10.1016/j.jacc.2004.11.067 | en_US |
dc.relation.references | Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348:593–600 | en_US |
dc.relation.references | doi: 10.1056/NEJMoa022287 | en_US |
dc.relation.references | Fadini GP, Coracina A, Baesso I, Agostini C, Tiengo A, Avogaro A, de Kreutzenberg SV (2006) Peripheral blood CD34+KDR+ endothelial progenitor cells are determinants of subclinical atherosclerosis in a middle-aged general population. Stroke 37:2277–2282 | en_US |
dc.relation.references | doi: 10.1161/01.STR.0000236064.19293.79 | en_US |
dc.relation.references | Kunz GA, Liang G, Cuculi F, Gregg D, Vata KC, Shaw LK, Goldschmidt-Clermont PJ, Dong C, Taylor DA, Peterson ED (2006) Circulating endothelial progenitor cells predict coronary artery disease severity. Am Heart J 152:190–195 | en_US |
dc.relation.references | doi: 10.1016/j.ahj.2006.02.001 | en_US |
dc.relation.references | Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A, Bohm M, Nickenig G (2005) Circulating endothelial progenitor cells and cardiovascular outcomes. N Engl J Med 353:999–1007 | en_US |
dc.relation.references | doi: 10.1056/NEJMoa043814 | en_US |
dc.relation.references | Aggeli C, Antoniades C, Cosma C, Chrysohoou C, Tousoulis D, Ladis V, Karageorga M, Pitsavos C, Stefanadis C (2005) Endothelial dysfunction and inflammatory process in transfusion-dependent patients with beta-thalassemia major. Int J Cardiol 105:80–84 | en_US |
dc.relation.references | doi: 10.1016/j.ijcard.2004.12.025 | en_US |
dc.relation.references | Limsuwan A, Tubtom D, Pakakasama S, Chaunsumrit A (2009) Comparison of vascular complications between conventional treatment and bone marrow transplantation for children with beta-thalassemia disease. Pediatr Cardiol 30:777–780 | en_US |
dc.relation.references | doi: 10.1007/s00246-009-9436-z | en_US |
dc.relation.references | de Witte T (2008) The role of iron in patients after bone marrow transplantation. Blood Rev 22(Suppl 2):S22–S28 | en_US |
dc.relation.references | doi: 10.1016/S0268-960X(08)70005-5 | en_US |
dc.relation.references | Evens AM, Mehta J, Gordon LI (2004) Rust and corrosion in hematopoietic stem cell transplantation: the problem of iron and oxidative stress. Bone Marrow Transplant 34:561–571 | en_US |
dc.relation.references | doi: 10.1038/sj.bmt.1704591 | en_US |
dc.relation.references | Rodriguez-Crespo I, Nishida CR, Knudsen GM, de Montellano PR (1999) Mutation of the five conserved histidines in the endothelial nitric-oxide synthase hemoprotein domain. No evidence for a non-heme metal requirement for catalysis. J Biol Chem 274:21617–21624 | en_US |
dc.relation.references | doi: 10.1074/jbc.274.31.21617 | en_US |
dc.relation.references | Smith JB, Selak MA, Dangelmaier C, Daniel JL (1992) Cytosolic calcium as a second messenger for collagen-induced platelet responses. Biochem J 288(Pt 3):925–929 | en_US |
dc.relation.references | Butthep P, Khuhapinant A, Bunyaratvej A, Fucharoen S, Kitaguchi H, Funahara Y (1997) Thalassemic serum inhibits endothelial cell mitosis in vitro. Southeast Asian J Trop Med Public Health 28(Suppl 3):155–160 | en_US |
dc.relation.references | Banjerdpongchai R, Wilairat P, Fucharoen S, Bunyaratvej A (1997) Morphological alterations and apoptosis of endothelial cells induced by thalassemic serum in vitro. Southeast Asian J Trop Med Public Health 28(Suppl 3):149–154 | en_US |
dc.relation.references | Leone AM, Valgimigli M, Giannico MB, Zaccone V, Perfetti M, D’Amario D, Rebuzzi AG, Crea F (2009) From bone marrow to the arterial wall: the ongoing tale of endothelial progenitor cells. Eur Heart J 30:890–899 | en_US |
dc.relation.references | doi: 10.1093/eurheartj/ehp078 | en_US |
dc.relation.references | Chaisiripoomkere W, Jootar S, Chanjarunee S, Ungkanont A (1999) Serum erythropoietin levels in thalassemia major and intermedia. Southeast Asian J Trop Med Public Health 30:786–788 | en_US |
dc.relation.references | Heeschen C, Aicher A, Lehmann R, Fichtlscherer S, Vasa M, Urbich C, Mildner-Rihm C, Martin H, Zeiher AM, Dimmeler S (2003) Erythropoietin is a potent physiologic stimulus for endothelial progenitor cell mobilization. Blood 102:1340–1346 | en_US |
dc.relation.references | doi: 10.1182/blood-2003-01-0223 | en_US |
dc.relation.references | Bahlmann FH, De Groot K, Spandau JM, Landry AL, Hertel B, Duckert T, Boehm SM, Menne J, Haller H, Fliser D (2004) Erythropoietin regulates endothelial progenitor cells. Blood 103:921–926 | en_US |
dc.relation.references | doi: 10.1182/blood-2003-04-1284 | en_US |
dc.relation.references | Anning PB, Chen Y, Lamb NJ, Mumby S, Quinlan GJ, Evans TW, Gutteridge JM (1999) Iron overload upregulates haem oxygenase 1 in the lung more rapidly than in other tissues. FEBS Lett 447:111–114 | en_US |
dc.relation.references | doi: 10.1016/S0014-5793(99)00250-1 | en_US |
dc.relation.references | Wu BJ, Midwinter RG, Cassano C, Beck K, Wang Y, Changsiri D, Gamble JR, Stocker R (2009) Heme oxygenase-1 increases endothelial progenitor cells. Arterioscler Thromb Vasc Biol 29:1537–1542 | en_US |
dc.relation.references | doi: 10.1161/ATVBAHA.109.184713 | en_US |
dc.relation.references | Shantsila E, Watson T, Tse HF, Lip GY (2007) Endothelial colony forming units: are they a reliable marker of endothelial progenitor cell numbers? Ann Med 39:474–479 | en_US |
dc.relation.references | doi: 10.1080/07853890701329283 | en_US |
dc.relation.references | Tura O, Barclay GR, Roddie H, Davies J, Turner ML (2007) Absence of a relationship between immunophenotypic and colony enumeration analysis of endothelial progenitor cells in clinical haematopoietic cell sources. J Transl Med 5:37 | en_US |
dc.relation.references | doi: 10.1186/1479-5876-5-37 | en_US |
dc.relation.references | Stakos DA, Tavridou A, Margaritis D, Tziakas DN, Kotsianidis I, Chalikias GK, Tsatalas K, Bourikas G, Manolopoulos VG, Boudoulas H (2009) Oxidised low-density lipoprotein and arterial function in beta-thalassemia major. Eur J Haematol 82:477–483 | en_US |
dc.relation.references | doi: 10.1111/j.1600-0609.2009.01236.x | en_US |
dc.relation.references | Case J, Ingram DA, Haneline LS (2008) Oxidative stress impairs endothelial progenitor cell function. Antioxid Redox Signal 10:1895–1907 | en_US |
dc.relation.references | doi: 10.1089/ars.2008.2118 | en_US |
dc.relation.references | He T, Peterson TE, Holmuhamedov EL, Terzic A, Caplice NM, Oberley LW, Katusic ZS (2004) Human endothelial progenitor cells tolerate oxidative stress due to intrinsically high expression of manganese superoxide dismutase. Arterioscler Thromb Vasc Biol 24:2021–2027 | en_US |
dc.relation.references | doi: 10.1161/01.ATV.0000142810.27849.8f | en_US |
dc.relation.references | Hoetzer GL, Van Guilder GP, Irmiger HM, Keith RS, Stauffer BL, DeSouza CA (2007) Aging, exercise, and endothelial progenitor cell clonogenic and migratory capacity in men. J Appl Physiol 102:847–852 | en_US |
dc.relation.references | doi: 10.1152/japplphysiol.01183.2006 | en_US |
dc.relation.references | Celermajer DS, Sorensen KE, Spiegelhalter DJ, Georgakopoulos D, Robinson J, Deanfield JE (1994) Aging is associated with endothelial dysfunction in healthy men years before the age-related decline in women. J Am Coll Cardiol 24:471–476 | en_US |
dc.relation.references | doi: 10.1016/0735-1097(94)90305-0 | en_US |
dc.identifier.volume | 91 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.spage | 345 | en_US |
dc.identifier.epage | 352 | en_US |
dc.identifier.eissn | 1432-0584 | en_US |
dc.identifier.isi | WOS:000300280900004 | - |
dc.description.other | Springer Open Choice, 21 Feb 2012 | en_US |
dc.identifier.scopusauthorid | Cheung, YF=7202111067 | - |
dc.identifier.scopusauthorid | Chan, S=35071039700 | - |
dc.identifier.scopusauthorid | Yang, M=7404927250 | - |
dc.identifier.scopusauthorid | Ye, JY=23669624100 | - |
dc.identifier.scopusauthorid | Ha, SY=7202501115 | - |
dc.identifier.scopusauthorid | Wong, SJ=25924109100 | - |
dc.identifier.scopusauthorid | Chan, GCF=16160154400 | - |
dc.identifier.citeulike | 9631716 | - |
dc.identifier.issnl | 0939-5555 | - |