File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Finite-temperature Gutzwiller projection for strongly correlated electron systems

TitleFinite-temperature Gutzwiller projection for strongly correlated electron systems
Authors
Issue Date2010
PublisherAmerican Physical Society. The Journal's web site is located at http://prb.aps.org/
Citation
Physical Review B (Condensed Matter and Materials Physics), 2010, v. 82 n. 12, article no. 125105 How to Cite?
AbstractWe generalized the Gutzwiller projectional variational method for the ground state of strongly correlated electron systems to the case of finite temperature. Under the Gutzwiller approximation, we show that this maps to a finite temperature renormalized mean-field theory. As one of the key ingredients in the theory, we obtained an explicit expression of the projection entropy or the entropy change due to the projection. We illustrate the application of the theory to the Anderson impurity problem and the half-filled Hubbard model and compare the theory to more elaborate techniques. We find qualitative agreement. The theory can be applied to a wide variety of Hubbard, t-J, and Anderson impurity models. © 2010 The American Physical Society.
Persistent Identifierhttp://hdl.handle.net/10722/125278
ISSN
2014 Impact Factor: 3.736
ISI Accession Number ID
Funding AgencyGrant Number
NSFC10974086
10734120
Ministry of Science and Technology of China2006CB921802
2006CB601002
111 ProjectB07026
RGC of Hong Kong
Funding Information:

Q.H.W. thanks T. Pruschke for fruitful discussions and providing us DMFT results for the Hubbard model. F.C.Z. thanks T. M. Rice for many helpful discussions. The work in Nanjing was supported by NSFC under Grants No. 10974086 and No. 10734120, the Ministry of Science and Technology of China under Grants No. 2006CB921802 and No. 2006CB601002, and the 111 Project under Grant No. B07026. The work in Hong Kong was supported by the RGC grants of Hong Kong.

References

 

DC FieldValueLanguage
dc.contributor.authorWang, WSen_HK
dc.contributor.authorHe, XMen_HK
dc.contributor.authorWang, Den_HK
dc.contributor.authorWang, QHen_HK
dc.contributor.authorWang, ZDen_HK
dc.contributor.authorZhang, FCen_HK
dc.date.accessioned2010-10-31T11:21:47Z-
dc.date.available2010-10-31T11:21:47Z-
dc.date.issued2010en_HK
dc.identifier.citationPhysical Review B (Condensed Matter and Materials Physics), 2010, v. 82 n. 12, article no. 125105-
dc.identifier.issn1098-0121en_HK
dc.identifier.urihttp://hdl.handle.net/10722/125278-
dc.description.abstractWe generalized the Gutzwiller projectional variational method for the ground state of strongly correlated electron systems to the case of finite temperature. Under the Gutzwiller approximation, we show that this maps to a finite temperature renormalized mean-field theory. As one of the key ingredients in the theory, we obtained an explicit expression of the projection entropy or the entropy change due to the projection. We illustrate the application of the theory to the Anderson impurity problem and the half-filled Hubbard model and compare the theory to more elaborate techniques. We find qualitative agreement. The theory can be applied to a wide variety of Hubbard, t-J, and Anderson impurity models. © 2010 The American Physical Society.en_HK
dc.languageengen_HK
dc.publisherAmerican Physical Society. The Journal's web site is located at http://prb.aps.org/en_HK
dc.relation.ispartofPhysical Review B (Condensed Matter and Materials Physics)-
dc.rightsCopyright 2010 by The American Physical Society. This article is available online at https://doi.org/10.1103/PhysRevB.82.125105-
dc.titleFinite-temperature Gutzwiller projection for strongly correlated electron systemsen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=1098-0121&volume=82&issue=12, article no. 125105&spage=&epage=&date=2010&atitle=Finite-temperature+Gutzwiller+projection+for+strongly+correlated+electron+systems-
dc.identifier.emailWang, ZD: zwang@hkucc.hku.hken_HK
dc.identifier.emailZhang, FC: fuchun@hkucc.hku.hken_HK
dc.identifier.authorityWang, ZD=rp00802en_HK
dc.identifier.authorityZhang, FC=rp00840en_HK
dc.description.naturepublished_or_final_versionen_US
dc.identifier.doi10.1103/PhysRevB.82.125105en_HK
dc.identifier.scopuseid_2-s2.0-77957730406en_HK
dc.identifier.hkuros180168en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-77957730406&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume82en_HK
dc.identifier.issue12en_HK
dc.identifier.spagearticle no. 125105-
dc.identifier.epagearticle no. 125105-
dc.identifier.isiWOS:000281643400001-
dc.publisher.placeUnited Statesen_HK
dc.identifier.scopusauthoridWang, WS=36545543600en_HK
dc.identifier.scopusauthoridHe, XM=12143489200en_HK
dc.identifier.scopusauthoridWang, D=7407070510en_HK
dc.identifier.scopusauthoridWang, QH=36180408500en_HK
dc.identifier.scopusauthoridWang, ZD=14828459100en_HK
dc.identifier.scopusauthoridZhang, FC=14012468800en_HK
dc.identifier.issnl1098-0121-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats