File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: A hyperbolic Lindstedt-poincaré method for homoclinic motion of a kind of strongly nonlinear autonomous oscillators

TitleA hyperbolic Lindstedt-poincaré method for homoclinic motion of a kind of strongly nonlinear autonomous oscillators
Authors
KeywordsHomoclinic orbit
Hyperbolic function
Lindstedt-Poincaré method
Nonlinear autonomous oscillator
Issue Date2009
PublisherSpringer Verlag. The Journal's web site is located at http://www.springeronline.com/sgw/cda/frontpage/0,11855,1-102-70-28739617-0,00.html?changeHeader=true
Citation
Acta Mechanica Sinica/Lixue Xuebao, 2009, v. 25 n. 5, p. 721-729 How to Cite?
AbstractA hyperbolic Lindstedt-Poincaré method is presented to determine the homoclinic solutions of a kind of nonlinear oscillators, in which critical value of the homoclinic bifurcation parameter can be determined. The generalized Liénard oscillator is studied in detail, and the present method's predictions are compared with those of Runge- Kutta method to illustrate its accuracy. © 2009 The Chinese Society of Theoretical and Applied Mechanics and Springer-verlag GmbH.
Persistent Identifierhttp://hdl.handle.net/10722/124883
ISSN
2023 Impact Factor: 3.8
2023 SCImago Journal Rankings: 0.809
ISI Accession Number ID
Funding AgencyGrant Number
National Natural Science Foundation of China10672193
Sun Yat-sen University (Fu Lan Scholarship)
University of Hong Kong (CRGC)
Funding Information:

The project supported by the National Natural Science Foundation of China (10672193), Sun Yat-sen University (Fu Lan Scholarship) and the University of Hong Kong (CRGC grant).

References

 

DC FieldValueLanguage
dc.contributor.authorChen, YYen_HK
dc.contributor.authorChen, SHen_HK
dc.contributor.authorSze, KYen_HK
dc.date.accessioned2010-10-31T10:59:25Z-
dc.date.available2010-10-31T10:59:25Z-
dc.date.issued2009en_HK
dc.identifier.citationActa Mechanica Sinica/Lixue Xuebao, 2009, v. 25 n. 5, p. 721-729en_HK
dc.identifier.issn0567-7718en_HK
dc.identifier.urihttp://hdl.handle.net/10722/124883-
dc.description.abstractA hyperbolic Lindstedt-Poincaré method is presented to determine the homoclinic solutions of a kind of nonlinear oscillators, in which critical value of the homoclinic bifurcation parameter can be determined. The generalized Liénard oscillator is studied in detail, and the present method's predictions are compared with those of Runge- Kutta method to illustrate its accuracy. © 2009 The Chinese Society of Theoretical and Applied Mechanics and Springer-verlag GmbH.en_HK
dc.languageengen_HK
dc.publisherSpringer Verlag. The Journal's web site is located at http://www.springeronline.com/sgw/cda/frontpage/0,11855,1-102-70-28739617-0,00.html?changeHeader=trueen_HK
dc.relation.ispartofActa Mechanica Sinica/Lixue Xuebaoen_HK
dc.rightsThe original publication is available at www.springerlink.com-
dc.subjectHomoclinic orbiten_HK
dc.subjectHyperbolic functionen_HK
dc.subjectLindstedt-Poincaré methoden_HK
dc.subjectNonlinear autonomous oscillatoren_HK
dc.titleA hyperbolic Lindstedt-poincaré method for homoclinic motion of a kind of strongly nonlinear autonomous oscillatorsen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0567-7718&volume=25&issue=5&spage=721&epage=729&date=2009&atitle=A+hyperbolic+Lindstedt-Poincaré+method+for+homoclinic+motion+of+a+kind+of+strongly+nonlinear+autonomous+oscillatorsen_HK
dc.identifier.emailSze, KY:szeky@graduate.hku.hken_HK
dc.identifier.authoritySze, KY=rp00171en_HK
dc.description.naturepostprint-
dc.identifier.doi10.1007/s10409-009-0276-0en_HK
dc.identifier.scopuseid_2-s2.0-70349290569en_HK
dc.identifier.hkuros175437en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-70349290569&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume25en_HK
dc.identifier.issue5en_HK
dc.identifier.spage721en_HK
dc.identifier.epage729en_HK
dc.identifier.isiWOS:000269843600017-
dc.publisher.placeGermanyen_HK
dc.identifier.scopusauthoridChen, YY=25925765400en_HK
dc.identifier.scopusauthoridChen, SH=13303161800en_HK
dc.identifier.scopusauthoridSze, KY=7006735060en_HK
dc.identifier.citeulike5110018-
dc.identifier.issnl0567-7718-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats