File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1007/s10409-009-0276-0
- Scopus: eid_2-s2.0-70349290569
- WOS: WOS:000269843600017
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: A hyperbolic Lindstedt-poincaré method for homoclinic motion of a kind of strongly nonlinear autonomous oscillators
Title | A hyperbolic Lindstedt-poincaré method for homoclinic motion of a kind of strongly nonlinear autonomous oscillators | ||||||||
---|---|---|---|---|---|---|---|---|---|
Authors | |||||||||
Keywords | Homoclinic orbit Hyperbolic function Lindstedt-Poincaré method Nonlinear autonomous oscillator | ||||||||
Issue Date | 2009 | ||||||||
Publisher | Springer Verlag. The Journal's web site is located at http://www.springeronline.com/sgw/cda/frontpage/0,11855,1-102-70-28739617-0,00.html?changeHeader=true | ||||||||
Citation | Acta Mechanica Sinica/Lixue Xuebao, 2009, v. 25 n. 5, p. 721-729 How to Cite? | ||||||||
Abstract | A hyperbolic Lindstedt-Poincaré method is presented to determine the homoclinic solutions of a kind of nonlinear oscillators, in which critical value of the homoclinic bifurcation parameter can be determined. The generalized Liénard oscillator is studied in detail, and the present method's predictions are compared with those of Runge- Kutta method to illustrate its accuracy. © 2009 The Chinese Society of Theoretical and Applied Mechanics and Springer-verlag GmbH. | ||||||||
Persistent Identifier | http://hdl.handle.net/10722/124883 | ||||||||
ISSN | 2023 Impact Factor: 3.8 2023 SCImago Journal Rankings: 0.809 | ||||||||
ISI Accession Number ID |
Funding Information: The project supported by the National Natural Science Foundation of China (10672193), Sun Yat-sen University (Fu Lan Scholarship) and the University of Hong Kong (CRGC grant). | ||||||||
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chen, YY | en_HK |
dc.contributor.author | Chen, SH | en_HK |
dc.contributor.author | Sze, KY | en_HK |
dc.date.accessioned | 2010-10-31T10:59:25Z | - |
dc.date.available | 2010-10-31T10:59:25Z | - |
dc.date.issued | 2009 | en_HK |
dc.identifier.citation | Acta Mechanica Sinica/Lixue Xuebao, 2009, v. 25 n. 5, p. 721-729 | en_HK |
dc.identifier.issn | 0567-7718 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/124883 | - |
dc.description.abstract | A hyperbolic Lindstedt-Poincaré method is presented to determine the homoclinic solutions of a kind of nonlinear oscillators, in which critical value of the homoclinic bifurcation parameter can be determined. The generalized Liénard oscillator is studied in detail, and the present method's predictions are compared with those of Runge- Kutta method to illustrate its accuracy. © 2009 The Chinese Society of Theoretical and Applied Mechanics and Springer-verlag GmbH. | en_HK |
dc.language | eng | en_HK |
dc.publisher | Springer Verlag. The Journal's web site is located at http://www.springeronline.com/sgw/cda/frontpage/0,11855,1-102-70-28739617-0,00.html?changeHeader=true | en_HK |
dc.relation.ispartof | Acta Mechanica Sinica/Lixue Xuebao | en_HK |
dc.rights | The original publication is available at www.springerlink.com | - |
dc.subject | Homoclinic orbit | en_HK |
dc.subject | Hyperbolic function | en_HK |
dc.subject | Lindstedt-Poincaré method | en_HK |
dc.subject | Nonlinear autonomous oscillator | en_HK |
dc.title | A hyperbolic Lindstedt-poincaré method for homoclinic motion of a kind of strongly nonlinear autonomous oscillators | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0567-7718&volume=25&issue=5&spage=721&epage=729&date=2009&atitle=A+hyperbolic+Lindstedt-Poincaré+method+for+homoclinic+motion+of+a+kind+of+strongly+nonlinear+autonomous+oscillators | en_HK |
dc.identifier.email | Sze, KY:szeky@graduate.hku.hk | en_HK |
dc.identifier.authority | Sze, KY=rp00171 | en_HK |
dc.description.nature | postprint | - |
dc.identifier.doi | 10.1007/s10409-009-0276-0 | en_HK |
dc.identifier.scopus | eid_2-s2.0-70349290569 | en_HK |
dc.identifier.hkuros | 175437 | en_HK |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-70349290569&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 25 | en_HK |
dc.identifier.issue | 5 | en_HK |
dc.identifier.spage | 721 | en_HK |
dc.identifier.epage | 729 | en_HK |
dc.identifier.isi | WOS:000269843600017 | - |
dc.publisher.place | Germany | en_HK |
dc.identifier.scopusauthorid | Chen, YY=25925765400 | en_HK |
dc.identifier.scopusauthorid | Chen, SH=13303161800 | en_HK |
dc.identifier.scopusauthorid | Sze, KY=7006735060 | en_HK |
dc.identifier.citeulike | 5110018 | - |
dc.identifier.issnl | 0567-7718 | - |