File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: Augmented Lagrangian approach for projective reconstruction from multiple views

TitleAugmented Lagrangian approach for projective reconstruction from multiple views
Authors
Issue Date2006
Citation
Proceedings - International Conference On Pattern Recognition, 2006, v. 1, p. 634-637 How to Cite?
AbstractIn this paper, we propose a new factorization-based algorithm for protective reconstruction by minimizing the 2D reprojection error in multiple images. Reformulating the protective reconstruction problem into a constrained minimization one, we estimate the protective depths, the projection matrix and the projective motion together by the solving a sequence of unconstrained minimization problems using the augmented Lagrangian method. The proposed algorithm is ready to handle missing data and it is guaranteed to converge more robustly and rapidly than the algorithm of [6]. © 2006 IEEE.
Persistent Identifierhttp://hdl.handle.net/10722/98801
ISSN
2023 SCImago Journal Rankings: 0.584
References

 

DC FieldValueLanguage
dc.contributor.authorMai, Fen_HK
dc.contributor.authorHung, YSen_HK
dc.date.accessioned2010-09-25T18:02:54Z-
dc.date.available2010-09-25T18:02:54Z-
dc.date.issued2006en_HK
dc.identifier.citationProceedings - International Conference On Pattern Recognition, 2006, v. 1, p. 634-637en_HK
dc.identifier.issn1051-4651en_HK
dc.identifier.urihttp://hdl.handle.net/10722/98801-
dc.description.abstractIn this paper, we propose a new factorization-based algorithm for protective reconstruction by minimizing the 2D reprojection error in multiple images. Reformulating the protective reconstruction problem into a constrained minimization one, we estimate the protective depths, the projection matrix and the projective motion together by the solving a sequence of unconstrained minimization problems using the augmented Lagrangian method. The proposed algorithm is ready to handle missing data and it is guaranteed to converge more robustly and rapidly than the algorithm of [6]. © 2006 IEEE.en_HK
dc.languageengen_HK
dc.relation.ispartofProceedings - International Conference on Pattern Recognitionen_HK
dc.titleAugmented Lagrangian approach for projective reconstruction from multiple viewsen_HK
dc.typeConference_Paperen_HK
dc.identifier.emailHung, YS:yshung@eee.hku.hken_HK
dc.identifier.authorityHung, YS=rp00220en_HK
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1109/ICPR.2006.285en_HK
dc.identifier.scopuseid_2-s2.0-34047227333en_HK
dc.identifier.hkuros134085en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-34047227333&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume1en_HK
dc.identifier.spage634en_HK
dc.identifier.epage637en_HK
dc.publisher.placeUnited Statesen_HK
dc.identifier.scopusauthoridMai, F=12804393400en_HK
dc.identifier.scopusauthoridHung, YS=8091656200en_HK
dc.identifier.issnl1051-4651-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats