File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: Adaptive Random Testing by C. G. Constraint

TitleAdaptive Random Testing by C. G. Constraint
Authors
KeywordsAdaptive Random Testing
Center of Gravity constraint
Random Testing
Issue Date2004
Citation
The 28th Annual International Computer Software and Applications Conference (COMPSAC 2004), Hong Kong, China, 28-30 September 2004. In IEEE International Computer Software and Applications Conference Proceedings , 2004, v. 2, p. 96-99 How to Cite?
AbstractIn this paper, we introduce a C. G. constraint on Adaptive Random Testing (ART) for programs with numerical input. One rationale behind Adaptive Random Testing is to have the test candidates to be as widespread over the input domain as possible. However, the computation may be quite expensive in some cases. The C. G. constraint is introduced to maintain the widespreadness while reducing the computation requirement in terms of number of distance measures. Three variations of C. G. constraints and their performance when compared with ART are discussed. © 2004 IEEE.
DescriptionConference Proceedings contain Workshop Papers and Fast Abstracts
Persistent Identifierhttp://hdl.handle.net/10722/93409
References

 

DC FieldValueLanguage
dc.contributor.authorChan, FTen_HK
dc.contributor.authorChan, KPen_HK
dc.contributor.authorChen, TYen_HK
dc.contributor.authorYiu, SMen_HK
dc.date.accessioned2010-09-25T15:00:16Z-
dc.date.available2010-09-25T15:00:16Z-
dc.date.issued2004en_HK
dc.identifier.citationThe 28th Annual International Computer Software and Applications Conference (COMPSAC 2004), Hong Kong, China, 28-30 September 2004. In IEEE International Computer Software and Applications Conference Proceedings , 2004, v. 2, p. 96-99en_HK
dc.identifier.urihttp://hdl.handle.net/10722/93409-
dc.descriptionConference Proceedings contain Workshop Papers and Fast Abstracts-
dc.description.abstractIn this paper, we introduce a C. G. constraint on Adaptive Random Testing (ART) for programs with numerical input. One rationale behind Adaptive Random Testing is to have the test candidates to be as widespread over the input domain as possible. However, the computation may be quite expensive in some cases. The C. G. constraint is introduced to maintain the widespreadness while reducing the computation requirement in terms of number of distance measures. Three variations of C. G. constraints and their performance when compared with ART are discussed. © 2004 IEEE.-
dc.languageengen_HK
dc.relation.ispartofIEEE International Computer Software and Applications Conference Proceedingsen_HK
dc.subjectAdaptive Random Testing-
dc.subjectCenter of Gravity constraint-
dc.subjectRandom Testing-
dc.titleAdaptive Random Testing by C. G. Constrainten_HK
dc.typeConference_Paperen_HK
dc.identifier.emailChan, FT: ftchan@hkuspace.hku.hken_HK
dc.identifier.emailChan, KP: kpchan@cs.hku.hken_HK
dc.identifier.emailYiu, SM: smyiu@cs.hku.hken_HK
dc.identifier.authorityChan, KP=rp00092en_HK
dc.identifier.authorityYiu, SM=rp00207en_HK
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.scopuseid_2-s2.0-18844367398-
dc.identifier.hkuros95324en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-18844367398&selection=ref&src=s&origin=recordpage-
dc.identifier.volume2-
dc.identifier.spage96en_HK
dc.identifier.epage99en_HK
dc.publisher.placeUnited States-
dc.identifier.scopusauthoridChan, FT=36151749500-
dc.identifier.scopusauthoridChen, TY=13104290200-
dc.identifier.scopusauthoridChan, KP=7406032820-
dc.identifier.scopusauthoridYiu, SM=7003282240-
dc.customcontrol.immutablesml 151016 - merged-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats