File Download

There are no files associated with this item.

Supplementary

Conference Paper: Secure and Practical Tree-structure Signature Schemes Based on Discrete Logarithms

TitleSecure and Practical Tree-structure Signature Schemes Based on Discrete Logarithms
Authors
Issue Date2000
PublisherSpringer.
Citation
IACR International Workshop on Public Key Cryptography, Melbourne, Australia, 18-20 January 2000. In Imai, H and Zheng, Y (Eds.). Public Key Cryptography. PKC 2000, p. 167-177. Berlin, Heidelberg: Springer, 2000 How to Cite?
AbstractIn this paper, we present another tree-structure signature scheme based on discrete logarithm problem modulo p, where p is a large prime. The basic signing algorithm is the original ELGmal signature scheme. The scheme attains ideal security, i.e, finding existential forgeries under adaptively chosen message attacks is equivalent to solving the discrete logarithm of any random integer y∈Z∗py∈Zp∗. The scheme is also efficient, it can be implemented almost as efficiently as the original ELGamal signature scheme. We can regard the scheme as an application of ELGamal signature scheme in tree-structure signature schemes.
Persistent Identifierhttp://hdl.handle.net/10722/93120
Series/Report no.Lecture Notes in Computer Science book series (LNCS, volume 1751)

 

DC FieldValueLanguage
dc.contributor.authorWang, Xen_HK
dc.contributor.authorHui, CKen_HK
dc.contributor.authorChow, KPen_HK
dc.contributor.authorTsang, WWen_HK
dc.contributor.authorChong, CFen_HK
dc.contributor.authorChan, HWen_HK
dc.date.accessioned2010-09-25T14:51:30Z-
dc.date.available2010-09-25T14:51:30Z-
dc.date.issued2000en_HK
dc.identifier.citationIACR International Workshop on Public Key Cryptography, Melbourne, Australia, 18-20 January 2000. In Imai, H and Zheng, Y (Eds.). Public Key Cryptography. PKC 2000, p. 167-177. Berlin, Heidelberg: Springer, 2000-
dc.identifier.urihttp://hdl.handle.net/10722/93120-
dc.description.abstractIn this paper, we present another tree-structure signature scheme based on discrete logarithm problem modulo p, where p is a large prime. The basic signing algorithm is the original ELGmal signature scheme. The scheme attains ideal security, i.e, finding existential forgeries under adaptively chosen message attacks is equivalent to solving the discrete logarithm of any random integer y∈Z∗py∈Zp∗. The scheme is also efficient, it can be implemented almost as efficiently as the original ELGamal signature scheme. We can regard the scheme as an application of ELGamal signature scheme in tree-structure signature schemes.-
dc.languageengen_HK
dc.publisherSpringer.-
dc.relation.ispartofPublic Key Cryptography. PKC 2000en_HK
dc.relation.ispartofseriesLecture Notes in Computer Science book series (LNCS, volume 1751)-
dc.titleSecure and Practical Tree-structure Signature Schemes Based on Discrete Logarithmsen_HK
dc.typeConference_Paperen_HK
dc.identifier.emailHui, CK: hui@cs.hku.hken_HK
dc.identifier.emailChow, KP: chow@cs.hku.hken_HK
dc.identifier.emailTsang, WW: tsang@cs.hku.hken_HK
dc.identifier.emailChong, CF: chong@cs.hku.hken_HK
dc.identifier.emailChan, HW: hwchan@cs.hku.hken_HK
dc.identifier.authorityHui, CK=rp00120en_HK
dc.identifier.authorityChow, KP=rp00111en_HK
dc.identifier.authorityTsang, WW=rp00179en_HK
dc.identifier.authorityChong, CF=rp00110en_HK
dc.identifier.authorityChan, HW=rp00091en_HK
dc.identifier.hkuros55510en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats