File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: Indexing multi-dimensional uncertain data with arbitrary probability density functions

TitleIndexing multi-dimensional uncertain data with arbitrary probability density functions
Authors
KeywordsIndexing (of information)
Microprocessor chips
Optimization
Probabilistic logics
Probability
Issue Date2005
PublisherMorgan Kaufmann Publishers, Inc..
Citation
The 31st International Conference on Very Large Data Bases (VLDB 2005), Trondheim, Norway, 30 August-2 September 2005. In Proceedings of 31st VLDB, 2005, v. 3, p. 922-933 How to Cite?
AbstractIn an "uncertain database", an object o is associated with a multi-dimensional probability density function (pdf), which describes the likelihood that o appears at each position in the data space. A fundamental operation is the "probabilistic range search" which, given a value p q and a rectangular area r q, retrieves the objects that appear in r q with probabilities at least p q. In this paper, we propose the U-tree, an access method designed to optimize both the I/O and CPU time of range retrieval on multi-dimensional imprecise data. The new structure is fully dynamic (i.e., objects can be incrementally inserted/deleted in any order), and does not place any constraints on the data pdfs. We verify the query and update efficiency of U-trees with extensive experiments.
DescriptionResearch Session 26: Spatial and Temporal Databases
Persistent Identifierhttp://hdl.handle.net/10722/93064
ISSN
References

 

DC FieldValueLanguage
dc.contributor.authorTaot, Yen_HK
dc.contributor.authorCheng, Ren_HK
dc.contributor.authorXiao, Xen_HK
dc.contributor.authorNgai, WKen_HK
dc.contributor.authorKao, Ben_HK
dc.contributor.authorPrabhakar, Sen_HK
dc.date.accessioned2010-09-25T14:49:48Z-
dc.date.available2010-09-25T14:49:48Z-
dc.date.issued2005en_HK
dc.identifier.citationThe 31st International Conference on Very Large Data Bases (VLDB 2005), Trondheim, Norway, 30 August-2 September 2005. In Proceedings of 31st VLDB, 2005, v. 3, p. 922-933en_HK
dc.identifier.issn1047-7349-
dc.identifier.urihttp://hdl.handle.net/10722/93064-
dc.descriptionResearch Session 26: Spatial and Temporal Databases-
dc.description.abstractIn an "uncertain database", an object o is associated with a multi-dimensional probability density function (pdf), which describes the likelihood that o appears at each position in the data space. A fundamental operation is the "probabilistic range search" which, given a value p q and a rectangular area r q, retrieves the objects that appear in r q with probabilities at least p q. In this paper, we propose the U-tree, an access method designed to optimize both the I/O and CPU time of range retrieval on multi-dimensional imprecise data. The new structure is fully dynamic (i.e., objects can be incrementally inserted/deleted in any order), and does not place any constraints on the data pdfs. We verify the query and update efficiency of U-trees with extensive experiments.en_HK
dc.languageengen_HK
dc.publisherMorgan Kaufmann Publishers, Inc..-
dc.relation.ispartofProceedings of 31st International Conference, VLDB 2005en_HK
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License-
dc.subjectIndexing (of information)-
dc.subjectMicroprocessor chips-
dc.subjectOptimization-
dc.subjectProbabilistic logics-
dc.subjectProbability-
dc.titleIndexing multi-dimensional uncertain data with arbitrary probability density functionsen_HK
dc.typeConference_Paperen_HK
dc.identifier.emailCheng, R:ckcheng@cs.hku.hken_HK
dc.identifier.emailKao, B:kao@cs.hku.hken_HK
dc.identifier.authorityCheng, R=rp00074en_HK
dc.identifier.authorityKao, B=rp00123en_HK
dc.description.naturepostprint-
dc.identifier.scopuseid_2-s2.0-33745614117en_HK
dc.identifier.hkuros176487en_HK
dc.identifier.hkuros123114-
dc.identifier.hkuros109832-
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-33745614117&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume3en_HK
dc.identifier.spage922en_HK
dc.identifier.epage933en_HK
dc.description.otherThe 31st International Conference on Very Large Data Bases (VLDB 2005), Trondheim, Norway, 30 August-2 September 2005. In Proceedings of 31st VLDB, 2005, v. 3, p. 922-933-
dc.identifier.scopusauthoridTaot, Y=14029210000en_HK
dc.identifier.scopusauthoridCheng, R=7201955416en_HK
dc.identifier.scopusauthoridXiao, X=14831850700en_HK
dc.identifier.scopusauthoridNgai, WK=14029152300en_HK
dc.identifier.scopusauthoridKao, B=35221592600en_HK
dc.identifier.scopusauthoridPrabhakar, S=7101672592en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats