File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: An SDP primal-dual algorithm for approximating the lovász-theta function

TitleAn SDP primal-dual algorithm for approximating the lovász-theta function
Authors
KeywordsInformation Theory
Issue Date2009
Citation
Ieee International Symposium On Information Theory - Proceedings, 2009, p. 2808-2812 How to Cite?
AbstractThe Lovász v-function [Lov79] on a graph G = (V, E) can be defined as the maximum of the sum of the entries of a positive semidefinite matrix X, whose trace Tr(X) equals 1, and X i j = 0 whenever {i, j} ε E. This function appears as a subroutine for many algorithms for graph problems such as maximum independent set and maximum clique. We apply Arora and Kale's primal-dual method for SDP to design an approximate algorithm for the v-function with an additive error of δ > 0, which runs in time O(α2n2/δ 2 logn - Me), where α = v(G) and Me = O(n3) is the time for a matrix exponentiation operation. Moreover, our techniques generalize to the weighted Lovász v-function, and both the maximum independent set weight and the maximum clique weight for vertex weighted perfect graphs can be approximated within a factor of (1+ε) in time O(ε -2n 5 log n). © 2009 IEEE.
Persistent Identifierhttp://hdl.handle.net/10722/92637
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorChan, THHen_HK
dc.contributor.authorChang, KLen_HK
dc.contributor.authorRaman, Ren_HK
dc.date.accessioned2010-09-17T10:52:38Z-
dc.date.available2010-09-17T10:52:38Z-
dc.date.issued2009en_HK
dc.identifier.citationIeee International Symposium On Information Theory - Proceedings, 2009, p. 2808-2812en_HK
dc.identifier.urihttp://hdl.handle.net/10722/92637-
dc.description.abstractThe Lovász v-function [Lov79] on a graph G = (V, E) can be defined as the maximum of the sum of the entries of a positive semidefinite matrix X, whose trace Tr(X) equals 1, and X i j = 0 whenever {i, j} ε E. This function appears as a subroutine for many algorithms for graph problems such as maximum independent set and maximum clique. We apply Arora and Kale's primal-dual method for SDP to design an approximate algorithm for the v-function with an additive error of δ > 0, which runs in time O(α2n2/δ 2 logn - Me), where α = v(G) and Me = O(n3) is the time for a matrix exponentiation operation. Moreover, our techniques generalize to the weighted Lovász v-function, and both the maximum independent set weight and the maximum clique weight for vertex weighted perfect graphs can be approximated within a factor of (1+ε) in time O(ε -2n 5 log n). © 2009 IEEE.en_HK
dc.languageengen_HK
dc.relation.ispartofIEEE International Symposium on Information Theory - Proceedingsen_HK
dc.subjectInformation Theoryen_HK
dc.titleAn SDP primal-dual algorithm for approximating the lovász-theta functionen_HK
dc.typeConference_Paperen_HK
dc.identifier.emailChan, THH:hubert@cs.hku.hken_HK
dc.identifier.authorityChan, THH=rp01312en_HK
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1109/ISIT.2009.5205779en_HK
dc.identifier.scopuseid_2-s2.0-70449463255en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-70449463255&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.spage2808en_HK
dc.identifier.epage2812en_HK
dc.identifier.isiWOS:000280141401278-
dc.identifier.scopusauthoridChan, THH=12645073600en_HK
dc.identifier.scopusauthoridChang, KL=26661735700en_HK
dc.identifier.scopusauthoridRaman, R=7102586740en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats