File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/S0006-3495(03)74654-2
- Scopus: eid_2-s2.0-0141530983
- PMID: 14507694
- WOS: WOS:000185575400020
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Novel interactions identified between μ-conotoxin and the Na + channel domain I P-loop: Implications for toxin-pore binding geometry
Title | Novel interactions identified between μ-conotoxin and the Na + channel domain I P-loop: Implications for toxin-pore binding geometry |
---|---|
Authors | |
Keywords | Chemicals And Cas Registry Numbers |
Issue Date | 2003 |
Publisher | Cell Press. The Journal's web site is located at http://www.cell.com/biophysj/ |
Citation | Biophysical Journal, 2003, v. 85 n. 4, p. 2299-2310 How to Cite? |
Abstract | μ-Conotoxins (μ-CTX) are peptides that inhibit Na+ flux by blocking the Na+ channel pore. Toxin residue arginine 13 is critical for both high affinity binding and for complete block of the single channel current, prompting the simple conventional view that residue 13 (R13) leads toxin docking by entering the channel along the pore axis. To date, the strongest interactions identified are between μ-CTX and domain II (DII) or DIII pore residues of the rat skeletal muscle (Nav1.4) Na + channels, but little data is available for the role of the DI P-loop in μ-CTX binding due to the lack of critical determinants identified in this domain. Despite being an essential determinant of isoform-specific tetrodotoxin sensitivity, the DI-Y401C variant had little effect on μ-CTX block. Here we report that the charge-changing substitution Y401K dramatically reduced the μ-CTX affinity (∼300-fold). Using mutant cycle analysis, we demonstrate that K401 couples strongly to R13 (ΔΔG > 3.0 kcal/mol) but not R1, K11, or R14 (≪1 kcal/mol). Unlike K401, however, a significant coupling was detected between toxin residue 14 and DI-E403K (ΔΔG = 1.4 kcal/mol for the E403K-Q14D pair). This appears to underlie the ability of DI-E403K channels to discriminate between the GIIIA and GIIIB isoforms of μ-CTX (p < 0.05), whereas Y401K, DII-E758Q, and DIII-D1241K do not. We also identify five additional, novel toxin-channel interactions (>0.75 kcal/mol) in DII (E758-K16, D762-R13, D762-K16, E765-R13, E765-K16). Considered together, these new interactions suggest that the R13 side chain and the bulk of the bound toxin μ-CTX molecule may be significantly tilted with respect to pore axis. |
Persistent Identifier | http://hdl.handle.net/10722/91580 |
ISSN | 2023 Impact Factor: 3.2 2023 SCImago Journal Rankings: 1.188 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Xue, T | en_HK |
dc.contributor.author | Ennis, IL | en_HK |
dc.contributor.author | Sato, K | en_HK |
dc.contributor.author | French, RJ | en_HK |
dc.contributor.author | Li, RA | en_HK |
dc.date.accessioned | 2010-09-17T10:21:41Z | - |
dc.date.available | 2010-09-17T10:21:41Z | - |
dc.date.issued | 2003 | en_HK |
dc.identifier.citation | Biophysical Journal, 2003, v. 85 n. 4, p. 2299-2310 | en_HK |
dc.identifier.issn | 0006-3495 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/91580 | - |
dc.description.abstract | μ-Conotoxins (μ-CTX) are peptides that inhibit Na+ flux by blocking the Na+ channel pore. Toxin residue arginine 13 is critical for both high affinity binding and for complete block of the single channel current, prompting the simple conventional view that residue 13 (R13) leads toxin docking by entering the channel along the pore axis. To date, the strongest interactions identified are between μ-CTX and domain II (DII) or DIII pore residues of the rat skeletal muscle (Nav1.4) Na + channels, but little data is available for the role of the DI P-loop in μ-CTX binding due to the lack of critical determinants identified in this domain. Despite being an essential determinant of isoform-specific tetrodotoxin sensitivity, the DI-Y401C variant had little effect on μ-CTX block. Here we report that the charge-changing substitution Y401K dramatically reduced the μ-CTX affinity (∼300-fold). Using mutant cycle analysis, we demonstrate that K401 couples strongly to R13 (ΔΔG > 3.0 kcal/mol) but not R1, K11, or R14 (≪1 kcal/mol). Unlike K401, however, a significant coupling was detected between toxin residue 14 and DI-E403K (ΔΔG = 1.4 kcal/mol for the E403K-Q14D pair). This appears to underlie the ability of DI-E403K channels to discriminate between the GIIIA and GIIIB isoforms of μ-CTX (p < 0.05), whereas Y401K, DII-E758Q, and DIII-D1241K do not. We also identify five additional, novel toxin-channel interactions (>0.75 kcal/mol) in DII (E758-K16, D762-R13, D762-K16, E765-R13, E765-K16). Considered together, these new interactions suggest that the R13 side chain and the bulk of the bound toxin μ-CTX molecule may be significantly tilted with respect to pore axis. | en_HK |
dc.language | eng | en_HK |
dc.publisher | Cell Press. The Journal's web site is located at http://www.cell.com/biophysj/ | en_HK |
dc.relation.ispartof | Biophysical Journal | en_HK |
dc.subject | Chemicals And Cas Registry Numbers | en_HK |
dc.subject.mesh | Binding Sites | en_HK |
dc.subject.mesh | Cell Line | en_HK |
dc.subject.mesh | Cells, Cultured | en_HK |
dc.subject.mesh | Computer Simulation | en_HK |
dc.subject.mesh | Conotoxins - chemistry - pharmacology | en_HK |
dc.subject.mesh | Dose-Response Relationship, Drug | en_HK |
dc.subject.mesh | Humans | en_HK |
dc.subject.mesh | Ion Channel Gating - drug effects - physiology | en_HK |
dc.subject.mesh | Kidney - drug effects - embryology - physiology | en_HK |
dc.subject.mesh | Membrane Potentials - drug effects - physiology | en_HK |
dc.subject.mesh | Models, Biological | en_HK |
dc.subject.mesh | Mutagenesis, Site-Directed | en_HK |
dc.subject.mesh | Porosity | en_HK |
dc.subject.mesh | Protein Binding | en_HK |
dc.subject.mesh | Protein Structure, Tertiary | en_HK |
dc.subject.mesh | Sodium Channels - chemistry - drug effects - physiology | en_HK |
dc.subject.mesh | Structure-Activity Relationship | en_HK |
dc.title | Novel interactions identified between μ-conotoxin and the Na + channel domain I P-loop: Implications for toxin-pore binding geometry | en_HK |
dc.type | Article | en_HK |
dc.identifier.email | Li, RA:ronaldli@hkucc.hku.hk | en_HK |
dc.identifier.authority | Li, RA=rp01352 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1016/S0006-3495(03)74654-2 | - |
dc.identifier.pmid | 14507694 | - |
dc.identifier.scopus | eid_2-s2.0-0141530983 | en_HK |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-0141530983&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 85 | en_HK |
dc.identifier.issue | 4 | en_HK |
dc.identifier.spage | 2299 | en_HK |
dc.identifier.epage | 2310 | en_HK |
dc.identifier.isi | WOS:000185575400020 | - |
dc.publisher.place | United States | en_HK |
dc.identifier.scopusauthorid | Xue, T=7005064190 | en_HK |
dc.identifier.scopusauthorid | Ennis, IL=6604033332 | en_HK |
dc.identifier.scopusauthorid | Sato, K=7406409211 | en_HK |
dc.identifier.scopusauthorid | French, RJ=7202789440 | en_HK |
dc.identifier.scopusauthorid | Li, RA=7404724466 | en_HK |
dc.identifier.issnl | 0006-3495 | - |