File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1161/CIRCULATIONAHA.106.615385
- Scopus: eid_2-s2.0-33748508208
- PMID: 16923751
- WOS: WOS:000240244700004
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Bioartificial sinus node constructed via in vivo gene transfer of an engineered pacemaker HCN channel reduces the dependence on electronic pacemaker in a sick-sinus syndrome model
Title | Bioartificial sinus node constructed via in vivo gene transfer of an engineered pacemaker HCN channel reduces the dependence on electronic pacemaker in a sick-sinus syndrome model |
---|---|
Authors | |
Keywords | Chemicals And Cas Registry Numbers |
Issue Date | 2006 |
Publisher | Lippincott Williams & Wilkins. The Journal's web site is located at http://circ.ahajournals.org |
Citation | Circulation, 2006, v. 114 n. 10, p. 1000-1011 How to Cite? |
Abstract | BACKGROUND - The normal cardiac rhythm originates in the sinoatrial (SA) node that anatomically resides in the right atrium. Malfunction of the SA node leads to various forms of arrhythmias that necessitate the implantation of electronic pacemakers. We hypothesized that overexpression of an engineered HCN construct via somatic gene transfer offers a flexible approach for fine-tuning cardiac pacing in vivo. METHODS AND RESULTS - Using various electrophysiological and mapping techniques, we examined the effects of in situ focal expression of HCN1-ΔΔΔ, the S3-S4 linker of which has been shortened to favor channel opening, on impulse generation and conduction. Single left ventricular cardiomyocytes isolated from guinea pig hearts preinjected with the recombinant adenovirus Ad-CMV-GFP-IRES-HCN1-ΔΔΔ in vivo uniquely exhibited automaticity with a normal firing rate (237±12 bpm). High-resolution ex vivo optical mapping of Ad-CGI-HCN1-ΔΔΔ- injected Langendorff-perfused hearts revealed the generation of spontaneous action potentials from the transduced region in the left ventricle. To evaluate the efficacy of our approach for reliable atrial pacing, we generated a porcine model of sick-sinus syndrome by guided radiofrequency ablation of the native SA node, followed by implantation of a dual-chamber electronic pacemaker to prevent bradycardia-induced hemodynamic collapse. Interestingly, focal transduction of Ad-CGI-HCN1-ΔΔΔ in the left atrium of animals with sick-sinus syndrome reproducibly induced a stable, catecholamine-responsive in vivo "bioartificial node" that exhibited a physiological heart rate and was capable of reliably pacing the myocardium, substantially reducing electronic pacing. CONCLUSIONS - The results of the present study provide important functional and mechanistic insights into cardiac automaticity and have further refined an HCN gene-based therapy for correcting defects in cardiac impulse generation. © 2006 American Heart Association, Inc. |
Persistent Identifier | http://hdl.handle.net/10722/91529 |
ISSN | 2023 Impact Factor: 35.5 2023 SCImago Journal Rankings: 8.415 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Tse, HF | en_HK |
dc.contributor.author | Xue, T | en_HK |
dc.contributor.author | Lau, CP | en_HK |
dc.contributor.author | Siu, CW | en_HK |
dc.contributor.author | Wang, K | en_HK |
dc.contributor.author | Zhang, QY | en_HK |
dc.contributor.author | Tomaselli, GF | en_HK |
dc.contributor.author | Akar, FG | en_HK |
dc.contributor.author | Li, RA | en_HK |
dc.date.accessioned | 2010-09-17T10:20:52Z | - |
dc.date.available | 2010-09-17T10:20:52Z | - |
dc.date.issued | 2006 | en_HK |
dc.identifier.citation | Circulation, 2006, v. 114 n. 10, p. 1000-1011 | en_HK |
dc.identifier.issn | 0009-7322 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/91529 | - |
dc.description.abstract | BACKGROUND - The normal cardiac rhythm originates in the sinoatrial (SA) node that anatomically resides in the right atrium. Malfunction of the SA node leads to various forms of arrhythmias that necessitate the implantation of electronic pacemakers. We hypothesized that overexpression of an engineered HCN construct via somatic gene transfer offers a flexible approach for fine-tuning cardiac pacing in vivo. METHODS AND RESULTS - Using various electrophysiological and mapping techniques, we examined the effects of in situ focal expression of HCN1-ΔΔΔ, the S3-S4 linker of which has been shortened to favor channel opening, on impulse generation and conduction. Single left ventricular cardiomyocytes isolated from guinea pig hearts preinjected with the recombinant adenovirus Ad-CMV-GFP-IRES-HCN1-ΔΔΔ in vivo uniquely exhibited automaticity with a normal firing rate (237±12 bpm). High-resolution ex vivo optical mapping of Ad-CGI-HCN1-ΔΔΔ- injected Langendorff-perfused hearts revealed the generation of spontaneous action potentials from the transduced region in the left ventricle. To evaluate the efficacy of our approach for reliable atrial pacing, we generated a porcine model of sick-sinus syndrome by guided radiofrequency ablation of the native SA node, followed by implantation of a dual-chamber electronic pacemaker to prevent bradycardia-induced hemodynamic collapse. Interestingly, focal transduction of Ad-CGI-HCN1-ΔΔΔ in the left atrium of animals with sick-sinus syndrome reproducibly induced a stable, catecholamine-responsive in vivo "bioartificial node" that exhibited a physiological heart rate and was capable of reliably pacing the myocardium, substantially reducing electronic pacing. CONCLUSIONS - The results of the present study provide important functional and mechanistic insights into cardiac automaticity and have further refined an HCN gene-based therapy for correcting defects in cardiac impulse generation. © 2006 American Heart Association, Inc. | en_HK |
dc.language | eng | en_HK |
dc.publisher | Lippincott Williams & Wilkins. The Journal's web site is located at http://circ.ahajournals.org | en_HK |
dc.relation.ispartof | Circulation | en_HK |
dc.rights | Circulation. Copyright © Lippincott Williams & Wilkins. | - |
dc.subject | Chemicals And Cas Registry Numbers | en_HK |
dc.subject.mesh | Animals | en_HK |
dc.subject.mesh | Arrhythmias, Cardiac - physiopathology - surgery | en_HK |
dc.subject.mesh | Bioartificial Organs | en_HK |
dc.subject.mesh | Cyclic Nucleotide-Gated Cation Channels | en_HK |
dc.subject.mesh | Disease Models, Animal | en_HK |
dc.subject.mesh | Electrophysiology | en_HK |
dc.subject.mesh | Gene Transfer Techniques | en_HK |
dc.subject.mesh | Guinea Pigs | en_HK |
dc.subject.mesh | Heart Rate | en_HK |
dc.subject.mesh | Ion Channels - genetics | en_HK |
dc.subject.mesh | Mice | en_HK |
dc.subject.mesh | Pacemaker, Artificial | en_HK |
dc.subject.mesh | Potassium Channels | en_HK |
dc.subject.mesh | Sick Sinus Syndrome - physiopathology - surgery | en_HK |
dc.subject.mesh | Sinoatrial Node - physiology | en_HK |
dc.subject.mesh | Swine | en_HK |
dc.subject.mesh | Swine, Miniature | en_HK |
dc.title | Bioartificial sinus node constructed via in vivo gene transfer of an engineered pacemaker HCN channel reduces the dependence on electronic pacemaker in a sick-sinus syndrome model | en_HK |
dc.type | Article | en_HK |
dc.identifier.email | Tse, HF:hftse@hkucc.hku.hk | en_HK |
dc.identifier.email | Siu, CW:cwdsiu@hkucc.hku.hk | en_HK |
dc.identifier.email | Li, RA:ronaldli@hkucc.hku.hk | en_HK |
dc.identifier.authority | Tse, HF=rp00428 | en_HK |
dc.identifier.authority | Siu, CW=rp00534 | en_HK |
dc.identifier.authority | Li, RA=rp01352 | en_HK |
dc.description.nature | link_to_OA_fulltext | - |
dc.identifier.doi | 10.1161/CIRCULATIONAHA.106.615385 | en_HK |
dc.identifier.pmid | 16923751 | - |
dc.identifier.scopus | eid_2-s2.0-33748508208 | en_HK |
dc.identifier.hkuros | 183054 | - |
dc.identifier.hkuros | 126501 | - |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-33748508208&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 114 | en_HK |
dc.identifier.issue | 10 | en_HK |
dc.identifier.spage | 1000 | en_HK |
dc.identifier.epage | 1011 | en_HK |
dc.identifier.eissn | 1524-4539 | - |
dc.identifier.isi | WOS:000240244700004 | - |
dc.publisher.place | United States | en_HK |
dc.identifier.scopusauthorid | Tse, HF=7006070805 | en_HK |
dc.identifier.scopusauthorid | Xue, T=7005064190 | en_HK |
dc.identifier.scopusauthorid | Lau, CP=7401968501 | en_HK |
dc.identifier.scopusauthorid | Siu, CW=7006550690 | en_HK |
dc.identifier.scopusauthorid | Wang, K=35286098800 | en_HK |
dc.identifier.scopusauthorid | Zhang, QY=35331268500 | en_HK |
dc.identifier.scopusauthorid | Tomaselli, GF=7005223451 | en_HK |
dc.identifier.scopusauthorid | Akar, FG=6701446552 | en_HK |
dc.identifier.scopusauthorid | Li, RA=7404724466 | en_HK |
dc.identifier.issnl | 0009-7322 | - |