File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1111/j.1600-0846.2007.00261.x
- Scopus: eid_2-s2.0-38349142814
- PMID: 18211602
- WOS: WOS:000252497100008
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Skin lesion classification using relative color features
Title | Skin lesion classification using relative color features |
---|---|
Authors | |
Keywords | Tradenames |
Issue Date | 2008 |
Publisher | Blackwell Munksgaard. The Journal's web site is located at http://www.blackwellpublishing.com/journals/SRT |
Citation | Skin Research and Technology, 2008, v. 14 n. 1, p. 53-64 How to Cite? |
Abstract | Background/purpose: Clinically, it is difficult to differentiate the early stage of malignant melanoma and certain benign skin lesions due to similarity in appearance. Our research uses image analysis of clinical skin images and relative color-based pattern recognition techniques to enhance the images and improve differentiation of these lesions. Methods: First, the relative color images were created from digitized photographic images. Then, they were segmented into objects and morphologically filtered. Next, the relative color features were extracted from the objects to form two different feature spaces; a lesion feature space and an object feature space. The two feature spaces serve as two data models to be analyzed to determine the best features. Finally, we used a statistical analysis model of relative color features, which better classifies the various types of skin lesions. Results/conclusions: The best features found for differentiation of melanoma and benign skin lesions from this study are area, mean in the red and blue bands, standard deviation in the red and green bands, skewness in the green band, and entropy in the red band. With the relative color feature algorithm developed, the best results were obtained with a multi-layer perceptron neural network model. This showed an overall classification success of 79%, with 70% of the benign lesions successfully classified, and 86% of malignant melanoma successfully classified. © 2007 Blackwell Munksgaard. |
Persistent Identifier | http://hdl.handle.net/10722/91293 |
ISSN | 2023 Impact Factor: 2.0 2023 SCImago Journal Rankings: 0.495 |
PubMed Central ID | |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cheng, Y | en_HK |
dc.contributor.author | Swamisai, R | en_HK |
dc.contributor.author | Umbaugh, SE | en_HK |
dc.contributor.author | Moss, RH | en_HK |
dc.contributor.author | Stoecker, WV | en_HK |
dc.contributor.author | Teegala, S | en_HK |
dc.contributor.author | Srinivasan, SK | en_HK |
dc.date.accessioned | 2010-09-17T10:16:20Z | - |
dc.date.available | 2010-09-17T10:16:20Z | - |
dc.date.issued | 2008 | en_HK |
dc.identifier.citation | Skin Research and Technology, 2008, v. 14 n. 1, p. 53-64 | en_HK |
dc.identifier.issn | 0909-752X | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/91293 | - |
dc.description.abstract | Background/purpose: Clinically, it is difficult to differentiate the early stage of malignant melanoma and certain benign skin lesions due to similarity in appearance. Our research uses image analysis of clinical skin images and relative color-based pattern recognition techniques to enhance the images and improve differentiation of these lesions. Methods: First, the relative color images were created from digitized photographic images. Then, they were segmented into objects and morphologically filtered. Next, the relative color features were extracted from the objects to form two different feature spaces; a lesion feature space and an object feature space. The two feature spaces serve as two data models to be analyzed to determine the best features. Finally, we used a statistical analysis model of relative color features, which better classifies the various types of skin lesions. Results/conclusions: The best features found for differentiation of melanoma and benign skin lesions from this study are area, mean in the red and blue bands, standard deviation in the red and green bands, skewness in the green band, and entropy in the red band. With the relative color feature algorithm developed, the best results were obtained with a multi-layer perceptron neural network model. This showed an overall classification success of 79%, with 70% of the benign lesions successfully classified, and 86% of malignant melanoma successfully classified. © 2007 Blackwell Munksgaard. | en_HK |
dc.language | eng | en_HK |
dc.publisher | Blackwell Munksgaard. The Journal's web site is located at http://www.blackwellpublishing.com/journals/SRT | en_HK |
dc.relation.ispartof | Skin Research and Technology | en_HK |
dc.subject | Tradenames | en_HK |
dc.title | Skin lesion classification using relative color features | en_HK |
dc.type | Article | en_HK |
dc.identifier.email | Cheng, Y:yuecheng@hku.hk | en_HK |
dc.identifier.authority | Cheng, Y=rp1320 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1111/j.1600-0846.2007.00261.x | en_HK |
dc.identifier.pmid | 18211602 | - |
dc.identifier.pmcid | PMC3184884 | - |
dc.identifier.scopus | eid_2-s2.0-38349142814 | en_HK |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-38349142814&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 14 | en_HK |
dc.identifier.issue | 1 | en_HK |
dc.identifier.spage | 53 | en_HK |
dc.identifier.epage | 64 | en_HK |
dc.identifier.eissn | 1600-0846 | - |
dc.identifier.isi | WOS:000252497100008 | - |
dc.identifier.citeulike | 2272192 | - |
dc.identifier.issnl | 0909-752X | - |