File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: On bulk loading TPR-tree

TitleOn bulk loading TPR-tree
Authors
KeywordsAlgorithms
Data Reduction
Database Systems
Mobile Computing
Issue Date2004
Citation
Proceedings - 2004 IEEE International Conference on Mobile Data Management, 2004, p. 114-124 How to Cite?
AbstractTPR-tree is a practical index structure for moving object databases. Due to the uniform distribution assumption, TPR-tree's bulk loading algorithm (TPR) is relatively inefficient in dealing with non-uniform datasets. In this paper we present a histogram-based bottom up algorithm (HBU) along with a modified top-down greedy split algorithm (TGS) for TPR-tree. HBU uses histograms to refine tree structures for different distributions. Empirical studies show that HBU outperforms both TPR and TGS for all kinds of non-uniform datasets, is relatively stable over varying degree of skewness and better for large datasets and large query windows.
Persistent Identifierhttp://hdl.handle.net/10722/91171
References

 

DC FieldValueLanguage
dc.contributor.authorLin, Ben_HK
dc.contributor.authorSu, Jen_HK
dc.date.accessioned2010-09-17T10:14:06Z-
dc.date.available2010-09-17T10:14:06Z-
dc.date.issued2004en_HK
dc.identifier.citationProceedings - 2004 IEEE International Conference on Mobile Data Management, 2004, p. 114-124en_HK
dc.identifier.urihttp://hdl.handle.net/10722/91171-
dc.description.abstractTPR-tree is a practical index structure for moving object databases. Due to the uniform distribution assumption, TPR-tree's bulk loading algorithm (TPR) is relatively inefficient in dealing with non-uniform datasets. In this paper we present a histogram-based bottom up algorithm (HBU) along with a modified top-down greedy split algorithm (TGS) for TPR-tree. HBU uses histograms to refine tree structures for different distributions. Empirical studies show that HBU outperforms both TPR and TGS for all kinds of non-uniform datasets, is relatively stable over varying degree of skewness and better for large datasets and large query windows.en_HK
dc.languageengen_HK
dc.relation.ispartofProceedings - 2004 IEEE International Conference on Mobile Data Managementen_HK
dc.subjectAlgorithmsen_HK
dc.subjectData Reductionen_HK
dc.subjectDatabase Systemsen_HK
dc.subjectMobile Computingen_HK
dc.titleOn bulk loading TPR-treeen_HK
dc.typeArticleen_HK
dc.identifier.emailLin, B:blin@hku.hken_HK
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.scopuseid_2-s2.0-2342509536en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-2342509536&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.spage114en_HK
dc.identifier.epage124en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats