File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1080/13658810210137004
- Scopus: eid_2-s2.0-0036332937
- WOS: WOS:000176640200002
- Find via
Supplementary
-
Bookmarks:
- CiteULike: 1
- Citations:
- Appears in Collections:
Article: Neural-network-based cellular automata for simulating multiple land use changes using GIS
Title | Neural-network-based cellular automata for simulating multiple land use changes using GIS |
---|---|
Authors | |
Issue Date | 2002 |
Publisher | Taylor & Francis Ltd. The Journal's web site is located at http://www.tandf.co.uk/journals/titles/13658816.asp |
Citation | International Journal Of Geographical Information Science, 2002, v. 16 n. 4, p. 323-343 How to Cite? |
Abstract | This paper presents a new method to simulate the evolution of multiple land uses based on the integration of neural networks and cellular automata using GIS. Simulation of multiple land use changes using cellular automata (CA) is difficult because numerous spatial variables and parameters have to be utilized. Conventional CA models have problems in defining simulation parameter values, transition rules and model structures. In this paper, a three-layer neural network with multiple output neurons is designed to calculate conversion probabilities for competing multiple land uses. The model involves iterative looping of the neural network to simulate gradual land use conversion processes. Spatial variables are not deterministic because they are dynamically updated at the end of each loop. A GIS is used to obtain site attributes and training data, and to provide spatial functions for constructing the neural network. The parameter values for modelling are automatically generated by the training procedure of neural networks. The model has been successfully applied to the simulation of multiple land use changes in a fast growing area in southern China. |
Persistent Identifier | http://hdl.handle.net/10722/89781 |
ISSN | 2023 Impact Factor: 4.3 2023 SCImago Journal Rankings: 1.436 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Li, X | en_HK |
dc.contributor.author | Yeh, AGO | en_HK |
dc.date.accessioned | 2010-09-06T10:01:43Z | - |
dc.date.available | 2010-09-06T10:01:43Z | - |
dc.date.issued | 2002 | en_HK |
dc.identifier.citation | International Journal Of Geographical Information Science, 2002, v. 16 n. 4, p. 323-343 | en_HK |
dc.identifier.issn | 1365-8816 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/89781 | - |
dc.description.abstract | This paper presents a new method to simulate the evolution of multiple land uses based on the integration of neural networks and cellular automata using GIS. Simulation of multiple land use changes using cellular automata (CA) is difficult because numerous spatial variables and parameters have to be utilized. Conventional CA models have problems in defining simulation parameter values, transition rules and model structures. In this paper, a three-layer neural network with multiple output neurons is designed to calculate conversion probabilities for competing multiple land uses. The model involves iterative looping of the neural network to simulate gradual land use conversion processes. Spatial variables are not deterministic because they are dynamically updated at the end of each loop. A GIS is used to obtain site attributes and training data, and to provide spatial functions for constructing the neural network. The parameter values for modelling are automatically generated by the training procedure of neural networks. The model has been successfully applied to the simulation of multiple land use changes in a fast growing area in southern China. | en_HK |
dc.language | eng | en_HK |
dc.publisher | Taylor & Francis Ltd. The Journal's web site is located at http://www.tandf.co.uk/journals/titles/13658816.asp | en_HK |
dc.relation.ispartof | International Journal of Geographical Information Science | en_HK |
dc.title | Neural-network-based cellular automata for simulating multiple land use changes using GIS | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=1365-8816&volume=16&issue=4&spage=323&epage=343&date=2002&atitle=Neural-network-based+cellular+automata+for+simulating+multiple+land+use+changes+using+GIS | en_HK |
dc.identifier.email | Yeh, AGO: hdxugoy@hkucc.hku.hk | en_HK |
dc.identifier.authority | Yeh, AGO=rp01033 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1080/13658810210137004 | en_HK |
dc.identifier.scopus | eid_2-s2.0-0036332937 | en_HK |
dc.identifier.hkuros | 78417 | en_HK |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-0036332937&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 16 | en_HK |
dc.identifier.issue | 4 | en_HK |
dc.identifier.spage | 323 | en_HK |
dc.identifier.epage | 343 | en_HK |
dc.identifier.isi | WOS:000176640200002 | - |
dc.publisher.place | United Kingdom | en_HK |
dc.identifier.scopusauthorid | Li, X=34872691500 | en_HK |
dc.identifier.scopusauthorid | Yeh, AGO=7103069369 | en_HK |
dc.identifier.citeulike | 7522861 | - |
dc.identifier.issnl | 1365-8816 | - |