File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/S0167-8396(03)00022-0
- Scopus: eid_2-s2.0-0037960142
- WOS: WOS:000182816000003
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Computing real inflection points of cubic algebraic curves
Title | Computing real inflection points of cubic algebraic curves |
---|---|
Authors | |
Keywords | Algebraic curve Hessian curve Inflection point Invariant Singular point |
Issue Date | 2003 |
Publisher | Elsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/cagd |
Citation | Computer Aided Geometric Design, 2003, v. 20 n. 2, p. 101-117 How to Cite? |
Abstract | Shape modeling using planar cubic algebraic curves calls for computing the real inflection points of these curves since inflection points represents important shape feature. A real inflection point is also required for transforming projectively a planar cubic algebraic curve to the normal form, in order to facilitate further analysis of the curve. However, the naive method for computing the inflection points of a planar cubic algebraic curve f = 0 by directly intersecting f = 0 and its Hessian curve H(f) = 0 requires solving a degree nine univariate polynomial equation, and thus is relatively inefficient. In this paper we present an algorithm for computing the real inflection points of a real planar cubic algebraic curve. The algorithm follows Hilbert's solution for computing the inflection points of a cubic algebraic curve in the complex projective plane. Hilbert's solution is based on invariant theory and requires solving only a quartic polynomial equation and several cubic polynomial equations. Through a detailed study with emphasis on the distinction between real and imaginary inflection points, we adapt Hilbert's solution to efficiently compute only the real inflection points of a cubic algebraic curve f = 0, without exhaustive but unnecessary search and root testing. To compute the real inflection points of f = 0, only two cubic polynomial equations need to be solved in our algorithm and it is unnecessary to solve numerically the quartic equation prescribed in Hilbert's solution. In addition, the invariants of f = 0 are used to analyze the singularity of a singular curve, since the number of the real inflection points of f = 0 depends on its singularity type. © 2003 Published by Elsevier Science B.V. |
Persistent Identifier | http://hdl.handle.net/10722/89108 |
ISSN | 2017 Impact Factor: 1.522 2015 SCImago Journal Rankings: 1.024 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chen, F | en_HK |
dc.contributor.author | Wang, W | en_HK |
dc.date.accessioned | 2010-09-06T09:52:29Z | - |
dc.date.available | 2010-09-06T09:52:29Z | - |
dc.date.issued | 2003 | en_HK |
dc.identifier.citation | Computer Aided Geometric Design, 2003, v. 20 n. 2, p. 101-117 | en_HK |
dc.identifier.issn | 0167-8396 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/89108 | - |
dc.description.abstract | Shape modeling using planar cubic algebraic curves calls for computing the real inflection points of these curves since inflection points represents important shape feature. A real inflection point is also required for transforming projectively a planar cubic algebraic curve to the normal form, in order to facilitate further analysis of the curve. However, the naive method for computing the inflection points of a planar cubic algebraic curve f = 0 by directly intersecting f = 0 and its Hessian curve H(f) = 0 requires solving a degree nine univariate polynomial equation, and thus is relatively inefficient. In this paper we present an algorithm for computing the real inflection points of a real planar cubic algebraic curve. The algorithm follows Hilbert's solution for computing the inflection points of a cubic algebraic curve in the complex projective plane. Hilbert's solution is based on invariant theory and requires solving only a quartic polynomial equation and several cubic polynomial equations. Through a detailed study with emphasis on the distinction between real and imaginary inflection points, we adapt Hilbert's solution to efficiently compute only the real inflection points of a cubic algebraic curve f = 0, without exhaustive but unnecessary search and root testing. To compute the real inflection points of f = 0, only two cubic polynomial equations need to be solved in our algorithm and it is unnecessary to solve numerically the quartic equation prescribed in Hilbert's solution. In addition, the invariants of f = 0 are used to analyze the singularity of a singular curve, since the number of the real inflection points of f = 0 depends on its singularity type. © 2003 Published by Elsevier Science B.V. | en_HK |
dc.language | eng | en_HK |
dc.publisher | Elsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/cagd | en_HK |
dc.relation.ispartof | Computer Aided Geometric Design | en_HK |
dc.rights | Computer-Aided Geometric Design. Copyright © Elsevier BV. | en_HK |
dc.subject | Algebraic curve | en_HK |
dc.subject | Hessian curve | en_HK |
dc.subject | Inflection point | en_HK |
dc.subject | Invariant | en_HK |
dc.subject | Singular point | en_HK |
dc.title | Computing real inflection points of cubic algebraic curves | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0167-8396&volume=20&issue=2&spage=101&epage=117&date=2003&atitle=Computing+real+inflection+points+of+cubic+algebraic+curves | en_HK |
dc.identifier.email | Wang, W:wenping@cs.hku.hk | en_HK |
dc.identifier.authority | Wang, W=rp00186 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1016/S0167-8396(03)00022-0 | en_HK |
dc.identifier.scopus | eid_2-s2.0-0037960142 | en_HK |
dc.identifier.hkuros | 81582 | en_HK |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-0037960142&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 20 | en_HK |
dc.identifier.issue | 2 | en_HK |
dc.identifier.spage | 101 | en_HK |
dc.identifier.epage | 117 | en_HK |
dc.identifier.isi | WOS:000182816000003 | - |
dc.publisher.place | Netherlands | en_HK |
dc.identifier.scopusauthorid | Chen, F=7404908180 | en_HK |
dc.identifier.scopusauthorid | Wang, W=35147101600 | en_HK |