File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1007/s003710050207
- Scopus: eid_2-s2.0-0343777464
- WOS: WOS:000087543200005
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Existence and computation of spherical rational quartic curves for Hermite interpolation
Title | Existence and computation of spherical rational quartic curves for Hermite interpolation |
---|---|
Authors | |
Issue Date | 2000 |
Publisher | Springer Verlag. The Journal's web site is located at http://link.springer.de/link/service/journals/00371/index.htm |
Citation | Visual Computer, 2000, v. 16 n. 3, p. 187-196 How to Cite? |
Abstract | We study the existence and computation of spherical rational quartic curves that interpolate Hermite data on a sphere, i.e. two distinct endpoints and tangent vectors at the two points. It is shown that spherical rational quartic curves interpolating such data always exist, and that the family of these curves has n degrees of freedom for any given Hermite data on Sn, n ≥ 2. A method is presented for generating all spherical rational quartic curves on Sn interpolating given Hermite data. |
Persistent Identifier | http://hdl.handle.net/10722/88994 |
ISSN | 2023 Impact Factor: 3.0 2023 SCImago Journal Rankings: 0.778 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wang, W | en_HK |
dc.contributor.author | Kaihuai, Q | en_HK |
dc.date.accessioned | 2010-09-06T09:51:03Z | - |
dc.date.available | 2010-09-06T09:51:03Z | - |
dc.date.issued | 2000 | en_HK |
dc.identifier.citation | Visual Computer, 2000, v. 16 n. 3, p. 187-196 | en_HK |
dc.identifier.issn | 0178-2789 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/88994 | - |
dc.description.abstract | We study the existence and computation of spherical rational quartic curves that interpolate Hermite data on a sphere, i.e. two distinct endpoints and tangent vectors at the two points. It is shown that spherical rational quartic curves interpolating such data always exist, and that the family of these curves has n degrees of freedom for any given Hermite data on Sn, n ≥ 2. A method is presented for generating all spherical rational quartic curves on Sn interpolating given Hermite data. | en_HK |
dc.language | eng | en_HK |
dc.publisher | Springer Verlag. The Journal's web site is located at http://link.springer.de/link/service/journals/00371/index.htm | en_HK |
dc.relation.ispartof | Visual Computer | en_HK |
dc.title | Existence and computation of spherical rational quartic curves for Hermite interpolation | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0178-2789&volume=16&issue=3/4&spage=187&epage=196&date=2001&atitle=Existence+and+computation+of+spherical+rational+quartic+curves+for+Hermite+interpolation | en_HK |
dc.identifier.email | Wang, W:wenping@cs.hku.hk | en_HK |
dc.identifier.authority | Wang, W=rp00186 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1007/s003710050207 | en_HK |
dc.identifier.scopus | eid_2-s2.0-0343777464 | en_HK |
dc.identifier.hkuros | 60833 | en_HK |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-0343777464&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 16 | en_HK |
dc.identifier.issue | 3 | en_HK |
dc.identifier.spage | 187 | en_HK |
dc.identifier.epage | 196 | en_HK |
dc.identifier.isi | WOS:000087543200005 | - |
dc.publisher.place | Germany | en_HK |
dc.identifier.scopusauthorid | Wang, W=35147101600 | en_HK |
dc.identifier.scopusauthorid | Kaihuai, Q=6508142162 | en_HK |
dc.identifier.issnl | 0178-2789 | - |