File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Nonparametric method for estimating the size of an open population using marginal data from repeated multiple lists

TitleNonparametric method for estimating the size of an open population using marginal data from repeated multiple lists
Authors
KeywordsKernel smoothing
Log-linear models
Multiple lists
Population size estimation
Issue Date2007
PublisherBlackwell Publishing Asia. The Journal's web site is located at http://www.blackwellpublishing.com/journals/ANZS
Citation
Australian And New Zealand Journal Of Statistics, 2007, v. 49 n. 3, p. 303-320 How to Cite?
AbstractSummary Kernel smoothing methods are used to extend the Poisson log-linear approach to the estimation of the size of population using multiple lists to an open population when the multiple lists are recorded at each time point. The data is marginal as only the lists at each time point are available and the transitions of individuals between lists at different time points are not observable. Our analysis is motivated by and applied to data on the number of drug addicts in the Hong Kong Special Administrative Region. © 2007 Australian Statistical Publishing Association Inc.
Persistent Identifierhttp://hdl.handle.net/10722/83055
ISSN
2015 Impact Factor: 0.431
2015 SCImago Journal Rankings: 0.275
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorLiu, Den_HK
dc.contributor.authorYip, PSFen_HK
dc.contributor.authorHuggins, RMen_HK
dc.date.accessioned2010-09-06T08:36:24Z-
dc.date.available2010-09-06T08:36:24Z-
dc.date.issued2007en_HK
dc.identifier.citationAustralian And New Zealand Journal Of Statistics, 2007, v. 49 n. 3, p. 303-320en_HK
dc.identifier.issn1369-1473en_HK
dc.identifier.urihttp://hdl.handle.net/10722/83055-
dc.description.abstractSummary Kernel smoothing methods are used to extend the Poisson log-linear approach to the estimation of the size of population using multiple lists to an open population when the multiple lists are recorded at each time point. The data is marginal as only the lists at each time point are available and the transitions of individuals between lists at different time points are not observable. Our analysis is motivated by and applied to data on the number of drug addicts in the Hong Kong Special Administrative Region. © 2007 Australian Statistical Publishing Association Inc.en_HK
dc.languageengen_HK
dc.publisherBlackwell Publishing Asia. The Journal's web site is located at http://www.blackwellpublishing.com/journals/ANZSen_HK
dc.relation.ispartofAustralian and New Zealand Journal of Statisticsen_HK
dc.subjectKernel smoothingen_HK
dc.subjectLog-linear modelsen_HK
dc.subjectMultiple listsen_HK
dc.subjectPopulation size estimationen_HK
dc.titleNonparametric method for estimating the size of an open population using marginal data from repeated multiple listsen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=1369-1473&volume=49&issue=3&spage=303&epage=320&date=2007&atitle=Nonparametric+method+for+estimating+the+size+of+an+open+population+using+marginal+data+from+repeated+multiple+listsen_HK
dc.identifier.emailYip, PSF: sfpyip@hku.hken_HK
dc.identifier.authorityYip, PSF=rp00596en_HK
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1111/j.1467-842X.2007.00482.xen_HK
dc.identifier.scopuseid_2-s2.0-34548205776en_HK
dc.identifier.hkuros138117en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-34548205776&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume49en_HK
dc.identifier.issue3en_HK
dc.identifier.spage303en_HK
dc.identifier.epage320en_HK
dc.identifier.isiWOS:000249086700007-
dc.publisher.placeAustraliaen_HK
dc.identifier.scopusauthoridLiu, D=21743123100en_HK
dc.identifier.scopusauthoridYip, PSF=7102503720en_HK
dc.identifier.scopusauthoridHuggins, RM=7102879186en_HK
dc.identifier.citeulike1608658-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats