File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1017/S0266466608090488
- Scopus: eid_2-s2.0-74149092439
- WOS: WOS:000269867600004
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Least absolute deviation estimation for unit root processes with garch errors
Title | Least absolute deviation estimation for unit root processes with garch errors |
---|---|
Authors | |
Issue Date | 2009 |
Publisher | Cambridge University Press. The Journal's web site is located at http://journals.cambridge.org/action/displayJournal?jid=ECT |
Citation | Econometric Theory, 2009, v. 25 n. 5, p. 1208-1227 How to Cite? |
Abstract | This paper considers a local least absolute deviation estimation for unit root processes with generalized autoregressive conditional heteroskedastic (GARCH) errors and derives its asymptotic properties under only finite second-order moment for both errors and innovations. When the innovations are symmetrically distributed, the asymptotic distribution of the estimated unit root is shown to be a functional of a bivariate Brownian motion, and then two unit root tests are derived. The simulation results demonstrate that the tests outperform those based on the Gaussian quasi maximum likelihood estimators with heavy-tailed innovations and those based on the simple least absolute deviation estimators. © 2009 Copyright Cambridge University Press 2009. |
Persistent Identifier | http://hdl.handle.net/10722/82944 |
ISSN | 2023 Impact Factor: 1.0 2023 SCImago Journal Rankings: 1.393 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Li, G | en_HK |
dc.contributor.author | Li, WK | en_HK |
dc.date.accessioned | 2010-09-06T08:35:10Z | - |
dc.date.available | 2010-09-06T08:35:10Z | - |
dc.date.issued | 2009 | en_HK |
dc.identifier.citation | Econometric Theory, 2009, v. 25 n. 5, p. 1208-1227 | en_HK |
dc.identifier.issn | 0266-4666 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/82944 | - |
dc.description.abstract | This paper considers a local least absolute deviation estimation for unit root processes with generalized autoregressive conditional heteroskedastic (GARCH) errors and derives its asymptotic properties under only finite second-order moment for both errors and innovations. When the innovations are symmetrically distributed, the asymptotic distribution of the estimated unit root is shown to be a functional of a bivariate Brownian motion, and then two unit root tests are derived. The simulation results demonstrate that the tests outperform those based on the Gaussian quasi maximum likelihood estimators with heavy-tailed innovations and those based on the simple least absolute deviation estimators. © 2009 Copyright Cambridge University Press 2009. | en_HK |
dc.language | eng | en_HK |
dc.publisher | Cambridge University Press. The Journal's web site is located at http://journals.cambridge.org/action/displayJournal?jid=ECT | en_HK |
dc.relation.ispartof | Econometric Theory | en_HK |
dc.rights | Econometric Theory. Copyright © Cambridge University Press. | en_HK |
dc.title | Least absolute deviation estimation for unit root processes with garch errors | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0266-4666&volume=25&spage=1208–1227&epage=&date=2009&atitle=Least+Absolute+Deviation+Estimation+For+Unit+Root+Processes+With+Garch+Errors | en_HK |
dc.identifier.email | Li, G: gdli@hku.hk | en_HK |
dc.identifier.email | Li, WK: hrntlwk@hku.hk | en_HK |
dc.identifier.authority | Li, G=rp00738 | en_HK |
dc.identifier.authority | Li, WK=rp00741 | en_HK |
dc.description.nature | published_or_final_version | - |
dc.identifier.doi | 10.1017/S0266466608090488 | en_HK |
dc.identifier.scopus | eid_2-s2.0-74149092439 | en_HK |
dc.identifier.hkuros | 164590 | en_HK |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-74149092439&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 25 | en_HK |
dc.identifier.issue | 5 | en_HK |
dc.identifier.spage | 1208 | en_HK |
dc.identifier.epage | 1227 | en_HK |
dc.identifier.eissn | 1469-4360 | - |
dc.identifier.isi | WOS:000269867600004 | - |
dc.publisher.place | United Kingdom | en_HK |
dc.identifier.scopusauthorid | Li, G=52563850500 | en_HK |
dc.identifier.scopusauthorid | Li, WK=14015971200 | en_HK |
dc.identifier.issnl | 0266-4666 | - |