File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: A note on transforming a response variable for linearity

TitleA note on transforming a response variable for linearity
Authors
KeywordsB-spline
Box-cox transformation
Canonical correlation
Nonparametric regression
Issue Date1998
PublisherOxford University Press. The Journal's web site is located at http://biomet.oxfordjournals.org/
Citation
Biometrika, 1998, v. 85 n. 3, p. 749-754 How to Cite?
AbstractFor the problem of choosing a transformation h(y) of a univariate response variable y to achieve the linearity of the regression function E{h(y)1x}, we view Cook & Weisberg's (1994) method as an iterative procedure and estimate the transformed linear model based on the fixed point of the iteration procedure. When the procedure is implemented with B-spline smoothing by projecting the function h(y) into a B-spline space, it is proved that the fixed point is identical to the solution obtained from the canonical correlation method proposed by He & Shen (1997). Real and simulated examples show that the results of Cook & Weisberg's and He & Shen's methods are often imilar but in some applications Cook & Weisberg's estimate may be improved by further iterations of the procedure.
Persistent Identifierhttp://hdl.handle.net/10722/82881
ISSN
2015 Impact Factor: 1.13
2015 SCImago Journal Rankings: 2.801
References

 

DC FieldValueLanguage
dc.contributor.authorShi, Pen_HK
dc.contributor.authorFung, WKen_HK
dc.date.accessioned2010-09-06T08:34:28Z-
dc.date.available2010-09-06T08:34:28Z-
dc.date.issued1998en_HK
dc.identifier.citationBiometrika, 1998, v. 85 n. 3, p. 749-754en_HK
dc.identifier.issn0006-3444en_HK
dc.identifier.urihttp://hdl.handle.net/10722/82881-
dc.description.abstractFor the problem of choosing a transformation h(y) of a univariate response variable y to achieve the linearity of the regression function E{h(y)1x}, we view Cook & Weisberg's (1994) method as an iterative procedure and estimate the transformed linear model based on the fixed point of the iteration procedure. When the procedure is implemented with B-spline smoothing by projecting the function h(y) into a B-spline space, it is proved that the fixed point is identical to the solution obtained from the canonical correlation method proposed by He & Shen (1997). Real and simulated examples show that the results of Cook & Weisberg's and He & Shen's methods are often imilar but in some applications Cook & Weisberg's estimate may be improved by further iterations of the procedure.en_HK
dc.languageengen_HK
dc.publisherOxford University Press. The Journal's web site is located at http://biomet.oxfordjournals.org/en_HK
dc.relation.ispartofBiometrikaen_HK
dc.rightsBiometrika. Copyright © Oxford University Press.en_HK
dc.subjectB-splineen_HK
dc.subjectBox-cox transformationen_HK
dc.subjectCanonical correlationen_HK
dc.subjectNonparametric regressionen_HK
dc.titleA note on transforming a response variable for linearityen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0006-3444&volume=85&spage=749&epage=754&date=1998&atitle=A+note+on+transforming+a+response+variable+for+linearityen_HK
dc.identifier.emailFung, WK: wingfung@hku.hken_HK
dc.identifier.authorityFung, WK=rp00696en_HK
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1093/biomet/85.3.749-
dc.identifier.scopuseid_2-s2.0-0012637270en_HK
dc.identifier.hkuros43454en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-0012637270&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume85en_HK
dc.identifier.issue3en_HK
dc.identifier.spage749en_HK
dc.identifier.epage754en_HK
dc.publisher.placeUnited Kingdomen_HK
dc.identifier.scopusauthoridShi, P=7202161006en_HK
dc.identifier.scopusauthoridFung, WK=13310399400en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats