File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1002/sim.2160
- Scopus: eid_2-s2.0-26444524022
- PMID: 16149127
- WOS: WOS:000232215600010
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Influence diagnostics for two-component Poisson mixture regression models: Applications in public health
Title | Influence diagnostics for two-component Poisson mixture regression models: Applications in public health |
---|---|
Authors | |
Keywords | Count data Diagnostics Heterogeneity Local influence Poisson mixture regression Random effects |
Issue Date | 2005 |
Publisher | John Wiley & Sons Ltd. The Journal's web site is located at http://www.interscience.wiley.com/jpages/0277-6715/ |
Citation | Statistics In Medicine, 2005, v. 24 n. 19, p. 3053-3071 How to Cite? |
Abstract | In many medical and health applications, Poisson mixture regression models are commonly used to analyse heterogeneous count data. Motivated by two data sets drawn from public health studies, influence diagnostics are proposed for assessing the sensitivity of the fitted two-component Poisson mixture regression models. Under various perturbations of the observed data or model assumptions, influence assessments based on the local influence approach are developed for detecting clusters and/or individual observations that impact on the estimation of model parameters. Results from studies on recurrent urinary tract infections and maternity length of stay illustrate the usefulness of the influence diagnostics. Copyright © 2005 John Wiley & Sons, Ltd. |
Persistent Identifier | http://hdl.handle.net/10722/82868 |
ISSN | 2023 Impact Factor: 1.8 2023 SCImago Journal Rankings: 1.348 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Xiang, L | en_HK |
dc.contributor.author | Yau, KKW | en_HK |
dc.contributor.author | Lee, AH | en_HK |
dc.contributor.author | Fung, WK | en_HK |
dc.date.accessioned | 2010-09-06T08:34:19Z | - |
dc.date.available | 2010-09-06T08:34:19Z | - |
dc.date.issued | 2005 | en_HK |
dc.identifier.citation | Statistics In Medicine, 2005, v. 24 n. 19, p. 3053-3071 | en_HK |
dc.identifier.issn | 0277-6715 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/82868 | - |
dc.description.abstract | In many medical and health applications, Poisson mixture regression models are commonly used to analyse heterogeneous count data. Motivated by two data sets drawn from public health studies, influence diagnostics are proposed for assessing the sensitivity of the fitted two-component Poisson mixture regression models. Under various perturbations of the observed data or model assumptions, influence assessments based on the local influence approach are developed for detecting clusters and/or individual observations that impact on the estimation of model parameters. Results from studies on recurrent urinary tract infections and maternity length of stay illustrate the usefulness of the influence diagnostics. Copyright © 2005 John Wiley & Sons, Ltd. | en_HK |
dc.language | eng | en_HK |
dc.publisher | John Wiley & Sons Ltd. The Journal's web site is located at http://www.interscience.wiley.com/jpages/0277-6715/ | en_HK |
dc.relation.ispartof | Statistics in Medicine | en_HK |
dc.rights | Statistics in Medicine. Copyright © John Wiley & Sons Ltd. | en_HK |
dc.subject | Count data | en_HK |
dc.subject | Diagnostics | en_HK |
dc.subject | Heterogeneity | en_HK |
dc.subject | Local influence | en_HK |
dc.subject | Poisson mixture regression | en_HK |
dc.subject | Random effects | en_HK |
dc.title | Influence diagnostics for two-component Poisson mixture regression models: Applications in public health | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0277-6715&volume=24&issue=19&spage=3053&epage=3071&date=2005&atitle=Influence+diagnostics+for+two-component+Poisson+mixture+regression+models:+applications+in+public+health | en_HK |
dc.identifier.email | Fung, WK: wingfung@hku.hk | en_HK |
dc.identifier.authority | Fung, WK=rp00696 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1002/sim.2160 | en_HK |
dc.identifier.pmid | 16149127 | - |
dc.identifier.scopus | eid_2-s2.0-26444524022 | en_HK |
dc.identifier.hkuros | 120290 | en_HK |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-26444524022&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 24 | en_HK |
dc.identifier.issue | 19 | en_HK |
dc.identifier.spage | 3053 | en_HK |
dc.identifier.epage | 3071 | en_HK |
dc.identifier.isi | WOS:000232215600010 | - |
dc.publisher.place | United Kingdom | en_HK |
dc.identifier.scopusauthorid | Xiang, L=7102911425 | en_HK |
dc.identifier.scopusauthorid | Yau, KKW=7101941425 | en_HK |
dc.identifier.scopusauthorid | Lee, AH=26643271800 | en_HK |
dc.identifier.scopusauthorid | Fung, WK=13310399400 | en_HK |
dc.identifier.issnl | 0277-6715 | - |