File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1111/j.0006-341X.2002.00316.x
- Scopus: eid_2-s2.0-0035989810
- PMID: 12071404
- WOS: WOS:000176157000007
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Modeling multivariate survival data by a semiparametric random effects proportional odds model
Title | Modeling multivariate survival data by a semiparametric random effects proportional odds model |
---|---|
Authors | |
Keywords | GHK simulator Monte Carlo method Random effects Rank invariant transformation Semiparametric proportional odds model |
Issue Date | 2002 |
Publisher | Blackwell Publishing Ltd. The Journal's web site is located at http://www.blackwellpublishing.com/journals/BIOM |
Citation | Biometrics, 2002, v. 58 n. 2, p. 316-323 How to Cite? |
Abstract | In this article, the focus is on the analysis of multivariate survival time data with various types of dependence structures. Examples of multivariate survival data include clustered data and repeated measurements from the same subject, such as the interrecurrence times of cancer tumors. A random effect semiparametric proportional odds model is proposed as an alternative to the proportional hazards model. The distribution of the random effects is assumed to be multivariate normal and the random effect is assumed to act additively to the baseline log-odds function. This class of models, which includes the usual shared random effects model, the additive variance components model, and the dynamic random effects model as special cases, is highly flexible and is capable of modeling a wide range of multivariate survival data. A unified estimation procedure is proposed to estimate the regression and dependence parameters simultaneously by means of a marginal-likelihood approach. Unlike the fully parametric case, the regression parameter estimate is not sensitive to the choice of correlation structure of the random effects. The marginal likelihood is approximated by the Monte Carlo method. Simulation studies are carried out to investigate the performance of the proposed method. The proposed method is applied to two well-known data sets, including clustered data and recurrent event times data. |
Persistent Identifier | http://hdl.handle.net/10722/82834 |
ISSN | 2023 Impact Factor: 1.4 2023 SCImago Journal Rankings: 1.480 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lam, KF | en_HK |
dc.contributor.author | Lee, YW | en_HK |
dc.contributor.author | Leung, TL | en_HK |
dc.date.accessioned | 2010-09-06T08:33:56Z | - |
dc.date.available | 2010-09-06T08:33:56Z | - |
dc.date.issued | 2002 | en_HK |
dc.identifier.citation | Biometrics, 2002, v. 58 n. 2, p. 316-323 | en_HK |
dc.identifier.issn | 0006-341X | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/82834 | - |
dc.description.abstract | In this article, the focus is on the analysis of multivariate survival time data with various types of dependence structures. Examples of multivariate survival data include clustered data and repeated measurements from the same subject, such as the interrecurrence times of cancer tumors. A random effect semiparametric proportional odds model is proposed as an alternative to the proportional hazards model. The distribution of the random effects is assumed to be multivariate normal and the random effect is assumed to act additively to the baseline log-odds function. This class of models, which includes the usual shared random effects model, the additive variance components model, and the dynamic random effects model as special cases, is highly flexible and is capable of modeling a wide range of multivariate survival data. A unified estimation procedure is proposed to estimate the regression and dependence parameters simultaneously by means of a marginal-likelihood approach. Unlike the fully parametric case, the regression parameter estimate is not sensitive to the choice of correlation structure of the random effects. The marginal likelihood is approximated by the Monte Carlo method. Simulation studies are carried out to investigate the performance of the proposed method. The proposed method is applied to two well-known data sets, including clustered data and recurrent event times data. | en_HK |
dc.language | eng | en_HK |
dc.publisher | Blackwell Publishing Ltd. The Journal's web site is located at http://www.blackwellpublishing.com/journals/BIOM | en_HK |
dc.relation.ispartof | Biometrics | en_HK |
dc.rights | Biometrics. Copyright © Blackwell Publishing Ltd. | en_HK |
dc.subject | GHK simulator | en_HK |
dc.subject | Monte Carlo method | en_HK |
dc.subject | Random effects | en_HK |
dc.subject | Rank invariant transformation | en_HK |
dc.subject | Semiparametric proportional odds model | en_HK |
dc.title | Modeling multivariate survival data by a semiparametric random effects proportional odds model | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0006-341X&volume=58&issue=2&spage=316&epage=323&date=2002&atitle=Modeling+multivariate+survival+data+by+a+semiparametric+random+effects+proportional+odds+model | en_HK |
dc.identifier.email | Lam, KF: hrntlkf@hkucc.hku.hk | en_HK |
dc.identifier.authority | Lam, KF=rp00718 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1111/j.0006-341X.2002.00316.x | - |
dc.identifier.pmid | 12071404 | - |
dc.identifier.scopus | eid_2-s2.0-0035989810 | en_HK |
dc.identifier.hkuros | 67530 | en_HK |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-0035989810&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 58 | en_HK |
dc.identifier.issue | 2 | en_HK |
dc.identifier.spage | 316 | en_HK |
dc.identifier.epage | 323 | en_HK |
dc.identifier.isi | WOS:000176157000007 | - |
dc.publisher.place | United Kingdom | en_HK |
dc.identifier.scopusauthorid | Lam, KF=8948421200 | en_HK |
dc.identifier.scopusauthorid | Lee, YW=8948421100 | en_HK |
dc.identifier.scopusauthorid | Leung, TL=7202110906 | en_HK |
dc.identifier.issnl | 0006-341X | - |