File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Scopus: eid_2-s2.0-0034358434
- WOS: WOS:000085327600007
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: On a mixture autoregressive model
Title | On a mixture autoregressive model |
---|---|
Authors | |
Keywords | Autocorrelation EM algorithm Mixture autoregressive model Model selection Stationarity |
Issue Date | 2000 |
Publisher | Wiley-Blackwell Publishing Ltd. The Journal's web site is located at http://www.blackwellpublishing.com/journals/RSSB |
Citation | Journal Of The Royal Statistical Society. Series B: Statistical Methodology, 2000, v. 62 n. 1, p. 95-115 How to Cite? |
Abstract | We generalize the Gaussian mixture transition distribution (GMTD) model introduced by Le and co-workers to the mixture autoregressive (MAR) model for the modelling of non-linear time series. The models consist of a mixture of K stationary or non-stationary AR components. The advantages of the MAR model over the GMTD model include a more full range of shape changing predictive distributions and the ability to handle cycles and conditional heteroscedasticity in the time series. The stationarity conditions and autocorrelation function are derived. The estimation is easily done via a simple EM algorithm and the model selection problem is addressed. The shape changing feature of the conditional distributions makes these models capable of modelling time series with multimodal conditional distributions and with heteroscedasticity. The models are applied to two real data sets and compared with other competing models. The MAR models appear to capture features of the data better than other competing models do. |
Persistent Identifier | http://hdl.handle.net/10722/82800 |
ISSN | 2023 Impact Factor: 3.1 2023 SCImago Journal Rankings: 4.330 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wong, CS | en_HK |
dc.contributor.author | Li, WK | en_HK |
dc.date.accessioned | 2010-09-06T08:33:34Z | - |
dc.date.available | 2010-09-06T08:33:34Z | - |
dc.date.issued | 2000 | en_HK |
dc.identifier.citation | Journal Of The Royal Statistical Society. Series B: Statistical Methodology, 2000, v. 62 n. 1, p. 95-115 | en_HK |
dc.identifier.issn | 1369-7412 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/82800 | - |
dc.description.abstract | We generalize the Gaussian mixture transition distribution (GMTD) model introduced by Le and co-workers to the mixture autoregressive (MAR) model for the modelling of non-linear time series. The models consist of a mixture of K stationary or non-stationary AR components. The advantages of the MAR model over the GMTD model include a more full range of shape changing predictive distributions and the ability to handle cycles and conditional heteroscedasticity in the time series. The stationarity conditions and autocorrelation function are derived. The estimation is easily done via a simple EM algorithm and the model selection problem is addressed. The shape changing feature of the conditional distributions makes these models capable of modelling time series with multimodal conditional distributions and with heteroscedasticity. The models are applied to two real data sets and compared with other competing models. The MAR models appear to capture features of the data better than other competing models do. | en_HK |
dc.language | eng | en_HK |
dc.publisher | Wiley-Blackwell Publishing Ltd. The Journal's web site is located at http://www.blackwellpublishing.com/journals/RSSB | en_HK |
dc.relation.ispartof | Journal of the Royal Statistical Society. Series B: Statistical Methodology | en_HK |
dc.subject | Autocorrelation | en_HK |
dc.subject | EM algorithm | en_HK |
dc.subject | Mixture autoregressive model | en_HK |
dc.subject | Model selection | en_HK |
dc.subject | Stationarity | en_HK |
dc.title | On a mixture autoregressive model | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0964-1998&volume=62&issue=1&spage=95&epage=115&date=2000&atitle=On+a+mixture+autoregressive+model | en_HK |
dc.identifier.email | Li, WK: hrntlwk@hku.hk | en_HK |
dc.identifier.authority | Li, WK=rp00741 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.scopus | eid_2-s2.0-0034358434 | en_HK |
dc.identifier.hkuros | 47760 | en_HK |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-0034358434&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 62 | en_HK |
dc.identifier.issue | 1 | en_HK |
dc.identifier.spage | 95 | en_HK |
dc.identifier.epage | 115 | en_HK |
dc.identifier.isi | WOS:000085327600007 | - |
dc.publisher.place | United Kingdom | en_HK |
dc.identifier.scopusauthorid | Wong, CS=20236705600 | en_HK |
dc.identifier.scopusauthorid | Li, WK=14015971200 | en_HK |
dc.identifier.issnl | 1369-7412 | - |