File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1111/j.1467-9892.2006.00467.x
- Scopus: eid_2-s2.0-33745328190
- WOS: WOS:000237972600004
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: On a mixture GARCH time-series model
Title | On a mixture GARCH time-series model |
---|---|
Authors | |
Keywords | GARCH MGARCH Stochastic difference equation Tail behaviour Volatility clustering |
Issue Date | 2006 |
Publisher | Blackwell Publishing Ltd. |
Citation | Journal Of Time Series Analysis, 2006, v. 27 n. 4, p. 577-597 How to Cite? |
Abstract | Recently, there has been a lot of interest in modelling real data with a heavy-tailed distribution. A popular candidate is the so-called generalized autoregressive conditional heteroscedastic (GARCH) model. Unfortunately, the tails of GARCH models are not thick enough in some applications. In this paper, we propose a mixture generalized autoregressive conditional heteroscedastic (MGARCH) model. The stationarity conditions and the tail behaviour of the MGARCH model are studied. It is shown that MGARCH models have tails thicker than those of the associated GARCH models. Therefore, the MGARCH models are more capable of capturing the heavy-tailed features in real data. Some real examples illustrate the results. © 2006 Blackwell Publishing Ltd. |
Persistent Identifier | http://hdl.handle.net/10722/82777 |
ISSN | 2023 Impact Factor: 1.2 2023 SCImago Journal Rankings: 0.875 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zhang, Z | en_HK |
dc.contributor.author | Li, WK | en_HK |
dc.contributor.author | Yuen, KC | en_HK |
dc.date.accessioned | 2010-09-06T08:33:18Z | - |
dc.date.available | 2010-09-06T08:33:18Z | - |
dc.date.issued | 2006 | en_HK |
dc.identifier.citation | Journal Of Time Series Analysis, 2006, v. 27 n. 4, p. 577-597 | en_HK |
dc.identifier.issn | 0143-9782 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/82777 | - |
dc.description.abstract | Recently, there has been a lot of interest in modelling real data with a heavy-tailed distribution. A popular candidate is the so-called generalized autoregressive conditional heteroscedastic (GARCH) model. Unfortunately, the tails of GARCH models are not thick enough in some applications. In this paper, we propose a mixture generalized autoregressive conditional heteroscedastic (MGARCH) model. The stationarity conditions and the tail behaviour of the MGARCH model are studied. It is shown that MGARCH models have tails thicker than those of the associated GARCH models. Therefore, the MGARCH models are more capable of capturing the heavy-tailed features in real data. Some real examples illustrate the results. © 2006 Blackwell Publishing Ltd. | en_HK |
dc.language | eng | en_HK |
dc.publisher | Blackwell Publishing Ltd. | en_HK |
dc.relation.ispartof | Journal of Time Series Analysis | en_HK |
dc.rights | Journal of Time Series Analysis. Copyright © Blackwell Publishing Ltd. | en_HK |
dc.subject | GARCH | en_HK |
dc.subject | MGARCH | en_HK |
dc.subject | Stochastic difference equation | en_HK |
dc.subject | Tail behaviour | en_HK |
dc.subject | Volatility clustering | en_HK |
dc.title | On a mixture GARCH time-series model | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0143-9782&volume=27&issue=4&spage=577&epage=597&date=2006&atitle=On+a+mixture+GARCH+time+series+model | en_HK |
dc.identifier.email | Li, WK: hrntlwk@hku.hk | en_HK |
dc.identifier.email | Yuen, KC: kcyuen@hku.hk | en_HK |
dc.identifier.authority | Li, WK=rp00741 | en_HK |
dc.identifier.authority | Yuen, KC=rp00836 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1111/j.1467-9892.2006.00467.x | en_HK |
dc.identifier.scopus | eid_2-s2.0-33745328190 | en_HK |
dc.identifier.hkuros | 115934 | en_HK |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-33745328190&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 27 | en_HK |
dc.identifier.issue | 4 | en_HK |
dc.identifier.spage | 577 | en_HK |
dc.identifier.epage | 597 | en_HK |
dc.identifier.isi | WOS:000237972600004 | - |
dc.publisher.place | United Kingdom | en_HK |
dc.identifier.scopusauthorid | Zhang, Z=37060044300 | en_HK |
dc.identifier.scopusauthorid | Li, WK=14015971200 | en_HK |
dc.identifier.scopusauthorid | Yuen, KC=7202333703 | en_HK |
dc.identifier.citeulike | 681332 | - |
dc.identifier.issnl | 0143-9782 | - |