File Download
 
Links for fulltext
(May Require Subscription)
 
Supplementary

Article: 3D numerical modeling of non-isotropic turbulent buoyant helicoidal flow and heat transfer in a curved open channel
  • Basic View
  • Metadata View
  • XML View
Title3D numerical modeling of non-isotropic turbulent buoyant helicoidal flow and heat transfer in a curved open channel
 
AuthorsShen, YM1
Ng, CO2
Ni, HQ1
 
Keywords3D numerical modeling
Buoyancy
Curved open channel
Non-isotropic turbulent flow
Stratification
 
Issue Date2003
 
PublisherPergamon. The Journal's web site is located at http://www.elsevier.com/locate/ijhmt
 
CitationInternational Journal Of Heat And Mass Transfer, 2003, v. 46 n. 11, p. 2087-2093 [How to Cite?]
DOI: http://dx.doi.org/10.1016/S0017-9310(02)00501-X
 
AbstractA 3D non-isotropic algebraic stress/flux turbulence model is employed to simulate turbulent buoyant helicoidal flow and heat transfer in a rectangular curved open channel. The prediction shows that, unlike the isothermal flow, there are two major and one minor secondary flow eddies in a cross section of thermally stratified turbulent buoyant helicoidal flow in a curved open channel. The results compare favorably with available experimental data. The thermocline in a curved channel is thicker than that in a straight channel. All of these is the result of complex interaction between the buoyant force, the centrifugal force and the Reynolds stresses. The turbulent flow in a curved channel is obviously non-isotropic: The turbulence fluctuations in vertical and radial directions are lower in magnitude than that in the axial direction, which illustrates the suppression of turbulence due to buoyant and centrifugal forces. The results are of significant practical value to engineering works such as the choice of sites for intake and pollutant-discharge structures in a curved river. © 2003 Elsevier Science Ltd. All rights reserved.
 
ISSN0017-9310
2012 Impact Factor: 2.315
2012 SCImago Journal Rankings: 1.529
 
DOIhttp://dx.doi.org/10.1016/S0017-9310(02)00501-X
 
ISI Accession Number IDWOS:000182035600010
 
ReferencesReferences in Scopus
 
DC FieldValue
dc.contributor.authorShen, YM
 
dc.contributor.authorNg, CO
 
dc.contributor.authorNi, HQ
 
dc.date.accessioned2010-09-06T07:18:27Z
 
dc.date.available2010-09-06T07:18:27Z
 
dc.date.issued2003
 
dc.description.abstractA 3D non-isotropic algebraic stress/flux turbulence model is employed to simulate turbulent buoyant helicoidal flow and heat transfer in a rectangular curved open channel. The prediction shows that, unlike the isothermal flow, there are two major and one minor secondary flow eddies in a cross section of thermally stratified turbulent buoyant helicoidal flow in a curved open channel. The results compare favorably with available experimental data. The thermocline in a curved channel is thicker than that in a straight channel. All of these is the result of complex interaction between the buoyant force, the centrifugal force and the Reynolds stresses. The turbulent flow in a curved channel is obviously non-isotropic: The turbulence fluctuations in vertical and radial directions are lower in magnitude than that in the axial direction, which illustrates the suppression of turbulence due to buoyant and centrifugal forces. The results are of significant practical value to engineering works such as the choice of sites for intake and pollutant-discharge structures in a curved river. © 2003 Elsevier Science Ltd. All rights reserved.
 
dc.description.natureLink_to_subscribed_fulltext
 
dc.identifier.citationInternational Journal Of Heat And Mass Transfer, 2003, v. 46 n. 11, p. 2087-2093 [How to Cite?]
DOI: http://dx.doi.org/10.1016/S0017-9310(02)00501-X
 
dc.identifier.doihttp://dx.doi.org/10.1016/S0017-9310(02)00501-X
 
dc.identifier.epage2093
 
dc.identifier.hkuros78470
 
dc.identifier.isiWOS:000182035600010
 
dc.identifier.issn0017-9310
2012 Impact Factor: 2.315
2012 SCImago Journal Rankings: 1.529
 
dc.identifier.issue11
 
dc.identifier.openurl
 
dc.identifier.scopuseid_2-s2.0-0037401256
 
dc.identifier.spage2087
 
dc.identifier.urihttp://hdl.handle.net/10722/76184
 
dc.identifier.volume46
 
dc.languageeng
 
dc.publisherPergamon. The Journal's web site is located at http://www.elsevier.com/locate/ijhmt
 
dc.publisher.placeUnited Kingdom
 
dc.relation.ispartofInternational Journal of Heat and Mass Transfer
 
dc.relation.referencesReferences in Scopus
 
dc.subject3D numerical modeling
 
dc.subjectBuoyancy
 
dc.subjectCurved open channel
 
dc.subjectNon-isotropic turbulent flow
 
dc.subjectStratification
 
dc.title3D numerical modeling of non-isotropic turbulent buoyant helicoidal flow and heat transfer in a curved open channel
 
dc.typeArticle
 
<?xml encoding="utf-8" version="1.0"?>
<item><contributor.author>Shen, YM</contributor.author>
<contributor.author>Ng, CO</contributor.author>
<contributor.author>Ni, HQ</contributor.author>
<date.accessioned>2010-09-06T07:18:27Z</date.accessioned>
<date.available>2010-09-06T07:18:27Z</date.available>
<date.issued>2003</date.issued>
<identifier.citation>International Journal Of Heat And Mass Transfer, 2003, v. 46 n. 11, p. 2087-2093</identifier.citation>
<identifier.issn>0017-9310</identifier.issn>
<identifier.uri>http://hdl.handle.net/10722/76184</identifier.uri>
<description.abstract>A 3D non-isotropic algebraic stress/flux turbulence model is employed to simulate turbulent buoyant helicoidal flow and heat transfer in a rectangular curved open channel. The prediction shows that, unlike the isothermal flow, there are two major and one minor secondary flow eddies in a cross section of thermally stratified turbulent buoyant helicoidal flow in a curved open channel. The results compare favorably with available experimental data. The thermocline in a curved channel is thicker than that in a straight channel. All of these is the result of complex interaction between the buoyant force, the centrifugal force and the Reynolds stresses. The turbulent flow in a curved channel is obviously non-isotropic: The turbulence fluctuations in vertical and radial directions are lower in magnitude than that in the axial direction, which illustrates the suppression of turbulence due to buoyant and centrifugal forces. The results are of significant practical value to engineering works such as the choice of sites for intake and pollutant-discharge structures in a curved river. &#169; 2003 Elsevier Science Ltd. All rights reserved.</description.abstract>
<language>eng</language>
<publisher>Pergamon. The Journal&apos;s web site is located at http://www.elsevier.com/locate/ijhmt</publisher>
<relation.ispartof>International Journal of Heat and Mass Transfer</relation.ispartof>
<subject>3D numerical modeling</subject>
<subject>Buoyancy</subject>
<subject>Curved open channel</subject>
<subject>Non-isotropic turbulent flow</subject>
<subject>Stratification</subject>
<title>3D numerical modeling of non-isotropic turbulent buoyant helicoidal flow and heat transfer in a curved open channel</title>
<type>Article</type>
<identifier.openurl>http://library.hku.hk:4550/resserv?sid=HKU:IR&amp;issn=0017-9310&amp;volume=46&amp;issue=11&amp;spage=2087&amp;epage=2093&amp;date=2003&amp;atitle=3D+numerical+modeling+of+non-isotropic+turbulent+buoyant+helicoidal+flow+and+heat+transfer+in+a+curved+open+channel</identifier.openurl>
<description.nature>Link_to_subscribed_fulltext</description.nature>
<identifier.doi>10.1016/S0017-9310(02)00501-X</identifier.doi>
<identifier.scopus>eid_2-s2.0-0037401256</identifier.scopus>
<identifier.hkuros>78470</identifier.hkuros>
<relation.references>http://www.scopus.com/mlt/select.url?eid=2-s2.0-0037401256&amp;selection=ref&amp;src=s&amp;origin=recordpage</relation.references>
<identifier.volume>46</identifier.volume>
<identifier.issue>11</identifier.issue>
<identifier.spage>2087</identifier.spage>
<identifier.epage>2093</identifier.epage>
<identifier.isi>WOS:000182035600010</identifier.isi>
<publisher.place>United Kingdom</publisher.place>
</item>
Author Affiliations
  1. Dalian University of Technology
  2. The University of Hong Kong