File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Product and rational decompositions of theta functions representations for nonlinear periodic waves

TitleProduct and rational decompositions of theta functions representations for nonlinear periodic waves
Authors
KeywordsHirota bilinear method
Nonlinear periodic waves
Theta functions
Issue Date2000
PublisherInstitute of Pure and Applied Physics. The Journal's web site is located at http://www.ipap.jp/jpsj/index.htm
Citation
Journal Of The Physical Society Of Japan, 2000, v. 69 n. 5, p. 1313-1321 How to Cite?
AbstractA class of periodic solutions of nonlinear evolution equations is expressed as products and rational expressions of theta/elliptic functions. Examples of equations treated include a coupled system of nonlinear Schrödinger (NLS) equations, the (2 + 1) dimensional sine Gordon system and the Sasa-Satsuma equation. Coupled modified Korteweg-de Vries and NLS systems show that these product periodic waves can be expanded as an infinite sum of solitary waves arising from the coupling. Brief consideration of discrete evolution equations show similar trends but some quantitative difference with the continuous counterpart.
Persistent Identifierhttp://hdl.handle.net/10722/76153
ISSN
2015 Impact Factor: 1.559
2015 SCImago Journal Rankings: 0.720
References

 

DC FieldValueLanguage
dc.contributor.authorChow, KWen_HK
dc.date.accessioned2010-09-06T07:18:09Z-
dc.date.available2010-09-06T07:18:09Z-
dc.date.issued2000en_HK
dc.identifier.citationJournal Of The Physical Society Of Japan, 2000, v. 69 n. 5, p. 1313-1321en_HK
dc.identifier.issn0031-9015en_HK
dc.identifier.urihttp://hdl.handle.net/10722/76153-
dc.description.abstractA class of periodic solutions of nonlinear evolution equations is expressed as products and rational expressions of theta/elliptic functions. Examples of equations treated include a coupled system of nonlinear Schrödinger (NLS) equations, the (2 + 1) dimensional sine Gordon system and the Sasa-Satsuma equation. Coupled modified Korteweg-de Vries and NLS systems show that these product periodic waves can be expanded as an infinite sum of solitary waves arising from the coupling. Brief consideration of discrete evolution equations show similar trends but some quantitative difference with the continuous counterpart.en_HK
dc.languageengen_HK
dc.publisherInstitute of Pure and Applied Physics. The Journal's web site is located at http://www.ipap.jp/jpsj/index.htmen_HK
dc.relation.ispartofJournal of the Physical Society of Japanen_HK
dc.subjectHirota bilinear methoden_HK
dc.subjectNonlinear periodic wavesen_HK
dc.subjectTheta functionsen_HK
dc.titleProduct and rational decompositions of theta functions representations for nonlinear periodic wavesen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0031-9015&volume=69 No 5&spage=1313&epage=1321&date=2000&atitle=Product+and+rational+decompositions+of+theta+functions+representations+for+nonlinear+periodic+wavesen_HK
dc.identifier.emailChow, KW:kwchow@hku.hken_HK
dc.identifier.authorityChow, KW=rp00112en_HK
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.scopuseid_2-s2.0-0034371313en_HK
dc.identifier.hkuros54961en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-0034371313&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume69en_HK
dc.identifier.issue5en_HK
dc.identifier.spage1313en_HK
dc.identifier.epage1321en_HK
dc.publisher.placeJapanen_HK
dc.identifier.scopusauthoridChow, KW=13605209900en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats