File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Flattening developable bi-parametric surfaces

TitleFlattening developable bi-parametric surfaces
Authors
Issue Date1996
PublisherPergamon. The Journal's web site is located at http://www.elsevier.com/locate/compstruc
Citation
Computers And Structures, 1996, v. 58 n. 4, p. 703-708 How to Cite?
AbstractThis paper describes a computer method for transforming an arbitrary developable surface into a flattened pattern. Developable surfaces are a special class of ruled surfaces. The Gaussian curvature of any point of the developable surfaces is zero. Some curves on developable surfaces are geodesic curves and the geodesic curvatures of all the points on these curves are zero. The flattening technique introduced in this paper is based on the geodesic curve length preservation and linear mapping principles. Both trimmed and untrimmed developable surfaces can be flattened by the algorithm.
Persistent Identifierhttp://hdl.handle.net/10722/76143
ISSN
2015 Impact Factor: 2.425
2015 SCImago Journal Rankings: 1.710
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorGan, MCen_HK
dc.contributor.authorTan, STen_HK
dc.contributor.authorChan, KWen_HK
dc.date.accessioned2010-09-06T07:18:03Z-
dc.date.available2010-09-06T07:18:03Z-
dc.date.issued1996en_HK
dc.identifier.citationComputers And Structures, 1996, v. 58 n. 4, p. 703-708en_HK
dc.identifier.issn0045-7949en_HK
dc.identifier.urihttp://hdl.handle.net/10722/76143-
dc.description.abstractThis paper describes a computer method for transforming an arbitrary developable surface into a flattened pattern. Developable surfaces are a special class of ruled surfaces. The Gaussian curvature of any point of the developable surfaces is zero. Some curves on developable surfaces are geodesic curves and the geodesic curvatures of all the points on these curves are zero. The flattening technique introduced in this paper is based on the geodesic curve length preservation and linear mapping principles. Both trimmed and untrimmed developable surfaces can be flattened by the algorithm.en_HK
dc.languageengen_HK
dc.publisherPergamon. The Journal's web site is located at http://www.elsevier.com/locate/compstrucen_HK
dc.relation.ispartofComputers and Structuresen_HK
dc.titleFlattening developable bi-parametric surfacesen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0045-7949&volume=58&issue=4&spage=703&epage=708&date=1996&atitle=Flattening+developable+bi-parametric+surfacesen_HK
dc.identifier.emailTan, ST:sttan@hkucc.hku.hken_HK
dc.identifier.emailChan, KW:akwchan@hkucc.hku.hken_HK
dc.identifier.authorityTan, ST=rp00174en_HK
dc.identifier.authorityChan, KW=rp00079en_HK
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1016/0045-7949(95)00191-Ien_HK
dc.identifier.scopuseid_2-s2.0-0038975632en_HK
dc.identifier.hkuros11637en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-0038975632&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume58en_HK
dc.identifier.issue4en_HK
dc.identifier.spage703en_HK
dc.identifier.epage708en_HK
dc.identifier.isiWOS:A1996TH09800004-
dc.publisher.placeUnited Kingdomen_HK
dc.identifier.scopusauthoridGan, MC=7005739570en_HK
dc.identifier.scopusauthoridTan, ST=7403366758en_HK
dc.identifier.scopusauthoridChan, KW=35188517700en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats