File Download
  • No File Attached
 
Links for fulltext
(May Require Subscription)
 
Supplementary

Article: Neurofuzzy network based adaptive integral control
  • Basic View
  • Metadata View
  • XML View
TitleNeurofuzzy network based adaptive integral control
 
AuthorsLiu, XJ1
LaraRosano, F1
Chan, CW2
 
KeywordsNeurofuzzy networks
Nonlinear controller
Offset
Self-tuning control
 
Issue Date2003
 
PublisherACTA Press.
 
CitationControl And Intelligent Systems, 2003, v. 31 n. 3, p. 173-180 [How to Cite?]
 
AbstractA self-tuning integral controller with offset removing ability using neurofuzzy methodology is derived for nonlinear control purpose. Controller Auto-Regressive Integrated Moving Average (CARIMA) model is used, and the control law produces integral control terms in a natural way. Neurofuzzy networks are chosen to implement the direct self-tuning nonlinear control. The performance of the self-tuning neurofuzzy controller is illustrated in detail by simulation examples involving both linear and nonlinear systems.
 
ISSN1480-1752
2013 SCImago Journal Rankings: 0.294
 
ReferencesReferences in Scopus
 
DC FieldValue
dc.contributor.authorLiu, XJ
 
dc.contributor.authorLaraRosano, F
 
dc.contributor.authorChan, CW
 
dc.date.accessioned2010-09-06T07:17:37Z
 
dc.date.available2010-09-06T07:17:37Z
 
dc.date.issued2003
 
dc.description.abstractA self-tuning integral controller with offset removing ability using neurofuzzy methodology is derived for nonlinear control purpose. Controller Auto-Regressive Integrated Moving Average (CARIMA) model is used, and the control law produces integral control terms in a natural way. Neurofuzzy networks are chosen to implement the direct self-tuning nonlinear control. The performance of the self-tuning neurofuzzy controller is illustrated in detail by simulation examples involving both linear and nonlinear systems.
 
dc.description.natureLink_to_subscribed_fulltext
 
dc.identifier.citationControl And Intelligent Systems, 2003, v. 31 n. 3, p. 173-180 [How to Cite?]
 
dc.identifier.epage180
 
dc.identifier.hkuros79472
 
dc.identifier.issn1480-1752
2013 SCImago Journal Rankings: 0.294
 
dc.identifier.issue3
 
dc.identifier.openurl
 
dc.identifier.scopuseid_2-s2.0-0042931063
 
dc.identifier.spage173
 
dc.identifier.urihttp://hdl.handle.net/10722/76097
 
dc.identifier.volume31
 
dc.languageeng
 
dc.publisherACTA Press.
 
dc.publisher.placeCanada
 
dc.relation.ispartofControl and Intelligent Systems
 
dc.relation.referencesReferences in Scopus
 
dc.subjectNeurofuzzy networks
 
dc.subjectNonlinear controller
 
dc.subjectOffset
 
dc.subjectSelf-tuning control
 
dc.titleNeurofuzzy network based adaptive integral control
 
dc.typeArticle
 
<?xml encoding="utf-8" version="1.0"?>
<item><contributor.author>Liu, XJ</contributor.author>
<contributor.author>LaraRosano, F</contributor.author>
<contributor.author>Chan, CW</contributor.author>
<date.accessioned>2010-09-06T07:17:37Z</date.accessioned>
<date.available>2010-09-06T07:17:37Z</date.available>
<date.issued>2003</date.issued>
<identifier.citation>Control And Intelligent Systems, 2003, v. 31 n. 3, p. 173-180</identifier.citation>
<identifier.issn>1480-1752</identifier.issn>
<identifier.uri>http://hdl.handle.net/10722/76097</identifier.uri>
<description.abstract>A self-tuning integral controller with offset removing ability using neurofuzzy methodology is derived for nonlinear control purpose. Controller Auto-Regressive Integrated Moving Average (CARIMA) model is used, and the control law produces integral control terms in a natural way. Neurofuzzy networks are chosen to implement the direct self-tuning nonlinear control. The performance of the self-tuning neurofuzzy controller is illustrated in detail by simulation examples involving both linear and nonlinear systems.</description.abstract>
<language>eng</language>
<publisher>ACTA Press.</publisher>
<relation.ispartof>Control and Intelligent Systems</relation.ispartof>
<subject>Neurofuzzy networks</subject>
<subject>Nonlinear controller</subject>
<subject>Offset</subject>
<subject>Self-tuning control</subject>
<title>Neurofuzzy network based adaptive integral control</title>
<type>Article</type>
<identifier.openurl>http://library.hku.hk:4550/resserv?sid=HKU:IR&amp;issn=1480-1752&amp;volume=31&amp;issue=3&amp;spage=173&amp;epage=180&amp;date=2003&amp;atitle=Neurofuzzy+network+based+adaptive+integral+control</identifier.openurl>
<description.nature>Link_to_subscribed_fulltext</description.nature>
<identifier.scopus>eid_2-s2.0-0042931063</identifier.scopus>
<identifier.hkuros>79472</identifier.hkuros>
<relation.references>http://www.scopus.com/mlt/select.url?eid=2-s2.0-0042931063&amp;selection=ref&amp;src=s&amp;origin=recordpage</relation.references>
<identifier.volume>31</identifier.volume>
<identifier.issue>3</identifier.issue>
<identifier.spage>173</identifier.spage>
<identifier.epage>180</identifier.epage>
<publisher.place>Canada</publisher.place>
</item>
Author Affiliations
  1. Universidad Nacional Autónoma de México
  2. The University of Hong Kong