File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1002/pssb.200402121
- Scopus: eid_2-s2.0-15544386606
- WOS: WOS:000228020300013
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Moving dislocations in general anisotropic piezoelectric solids
Title | Moving dislocations in general anisotropic piezoelectric solids |
---|---|
Authors | |
Issue Date | 2005 |
Publisher | Wiley - V C H Verlag GmbH & Co KGaA. The Journal's web site is located at http://www.physica-status-solidi.com |
Citation | Physica Status Solidi (B) Basic Research, 2005, v. 242 n. 4, p. 842-853 How to Cite? |
Abstract | The explicit closed-form solution is presented for a moving dislocation with the generalized Burgers vector b = (b1,b2,b 3, Δφ]T in an anisotropic piezoelectric solid, where Δφ corresponds to an electric dipole layer along the slip plane. The steady-state version of the Stroh formalism for piezoelectricity is used in this work. Particular attention is paid to the basic characteristics of the electric displacement and electric field due to the moving piezoelectric dislocations. As an important example, a detailed analysis is made for moving dislocations in hexagonal piezoelectric crystals. © 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Persistent Identifier | http://hdl.handle.net/10722/76001 |
ISSN | 2023 Impact Factor: 1.5 2023 SCImago Journal Rankings: 0.388 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Soh, AK | en_HK |
dc.contributor.author | Liu, JX | en_HK |
dc.contributor.author | Lee, KWL | en_HK |
dc.contributor.author | Fang, DN | en_HK |
dc.date.accessioned | 2010-09-06T07:16:39Z | - |
dc.date.available | 2010-09-06T07:16:39Z | - |
dc.date.issued | 2005 | en_HK |
dc.identifier.citation | Physica Status Solidi (B) Basic Research, 2005, v. 242 n. 4, p. 842-853 | en_HK |
dc.identifier.issn | 0370-1972 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/76001 | - |
dc.description.abstract | The explicit closed-form solution is presented for a moving dislocation with the generalized Burgers vector b = (b1,b2,b 3, Δφ]T in an anisotropic piezoelectric solid, where Δφ corresponds to an electric dipole layer along the slip plane. The steady-state version of the Stroh formalism for piezoelectricity is used in this work. Particular attention is paid to the basic characteristics of the electric displacement and electric field due to the moving piezoelectric dislocations. As an important example, a detailed analysis is made for moving dislocations in hexagonal piezoelectric crystals. © 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. | en_HK |
dc.language | eng | en_HK |
dc.publisher | Wiley - V C H Verlag GmbH & Co KGaA. The Journal's web site is located at http://www.physica-status-solidi.com | en_HK |
dc.relation.ispartof | Physica Status Solidi (B) Basic Research | en_HK |
dc.title | Moving dislocations in general anisotropic piezoelectric solids | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0370-1972&volume=242&issue=4&spage=842&epage=853&date=2005&atitle=Moving+dislocations+in+general+anisotropic+piezoelectric+solids | en_HK |
dc.identifier.email | Soh, AK:aksoh@hkucc.hku.hk | en_HK |
dc.identifier.authority | Soh, AK=rp00170 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1002/pssb.200402121 | en_HK |
dc.identifier.scopus | eid_2-s2.0-15544386606 | en_HK |
dc.identifier.hkuros | 98355 | en_HK |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-15544386606&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 242 | en_HK |
dc.identifier.issue | 4 | en_HK |
dc.identifier.spage | 842 | en_HK |
dc.identifier.epage | 853 | en_HK |
dc.identifier.isi | WOS:000228020300013 | - |
dc.publisher.place | Germany | en_HK |
dc.identifier.scopusauthorid | Soh, AK=7006795203 | en_HK |
dc.identifier.scopusauthorid | Liu, JX=36063914500 | en_HK |
dc.identifier.scopusauthorid | Lee, KWL=8264701500 | en_HK |
dc.identifier.scopusauthorid | Fang, DN=7202133612 | en_HK |
dc.identifier.issnl | 0370-1972 | - |