File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/S0017-9310(00)00229-5
- Scopus: eid_2-s2.0-0035916812
- WOS: WOS:000167694600003
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Well-posedness and solution structure of dual-phase-lagging heat conduction
Title | Well-posedness and solution structure of dual-phase-lagging heat conduction |
---|---|
Authors | |
Issue Date | 2001 |
Publisher | Pergamon. The Journal's web site is located at http://www.elsevier.com/locate/ijhmt |
Citation | International Journal Of Heat And Mass Transfer, 2001, v. 44 n. 9, p. 1659-1669 How to Cite? |
Abstract | The dual-phase-lagging heat conduction equation is shown to be well-posed in a finite 1D region under Dirichlet, Neumann or Robin boundary conditions. Two solution structure theorems are developed for dual-phase-lagging heat conduction equations under linear boundary conditions. These theorems express contributions (to the temperature field) of the initial temperature distribution and the source term by that of the initial time-rate change of the temperature. This reveals the structure of the temperature field and considerably simplifies the development of solutions of dual-phase-lagging heat conduction equations. |
Persistent Identifier | http://hdl.handle.net/10722/75975 |
ISSN | 2023 Impact Factor: 5.0 2023 SCImago Journal Rankings: 1.224 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Wang, L | en_HK |
dc.contributor.author | Xu, M | en_HK |
dc.contributor.author | Zhou, X | en_HK |
dc.date.accessioned | 2010-09-06T07:16:23Z | - |
dc.date.available | 2010-09-06T07:16:23Z | - |
dc.date.issued | 2001 | en_HK |
dc.identifier.citation | International Journal Of Heat And Mass Transfer, 2001, v. 44 n. 9, p. 1659-1669 | en_HK |
dc.identifier.issn | 0017-9310 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/75975 | - |
dc.description.abstract | The dual-phase-lagging heat conduction equation is shown to be well-posed in a finite 1D region under Dirichlet, Neumann or Robin boundary conditions. Two solution structure theorems are developed for dual-phase-lagging heat conduction equations under linear boundary conditions. These theorems express contributions (to the temperature field) of the initial temperature distribution and the source term by that of the initial time-rate change of the temperature. This reveals the structure of the temperature field and considerably simplifies the development of solutions of dual-phase-lagging heat conduction equations. | en_HK |
dc.language | eng | en_HK |
dc.publisher | Pergamon. The Journal's web site is located at http://www.elsevier.com/locate/ijhmt | en_HK |
dc.relation.ispartof | International Journal of Heat and Mass Transfer | en_HK |
dc.title | Well-posedness and solution structure of dual-phase-lagging heat conduction | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0017-9310&volume=44&spage=1659&epage=1669&date=2001&atitle=Well-posedness+and+solution+structure+of+dual-phase-lagging+heat+conduction | en_HK |
dc.identifier.email | Wang, L:lqwang@hkucc.hku.hk | en_HK |
dc.identifier.authority | Wang, L=rp00184 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1016/S0017-9310(00)00229-5 | en_HK |
dc.identifier.scopus | eid_2-s2.0-0035916812 | en_HK |
dc.identifier.hkuros | 62958 | en_HK |
dc.identifier.hkuros | 71009 | - |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-0035916812&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 44 | en_HK |
dc.identifier.issue | 9 | en_HK |
dc.identifier.spage | 1659 | en_HK |
dc.identifier.epage | 1669 | en_HK |
dc.identifier.isi | WOS:000167694600003 | - |
dc.publisher.place | United Kingdom | en_HK |
dc.identifier.scopusauthorid | Wang, L=35235288500 | en_HK |
dc.identifier.scopusauthorid | Xu, M=7403607587 | en_HK |
dc.identifier.scopusauthorid | Zhou, X=7410094904 | en_HK |
dc.identifier.issnl | 0017-9310 | - |