File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: A novel approach to the convexity control of interpolant curves

TitleA novel approach to the convexity control of interpolant curves
Authors
KeywordsConstrained interpolation
Curve design
Error estimation
Preserving convexity interpolation
Rational spline
Issue Date2003
PublisherJohn Wiley & Sons Ltd. The Journal's web site is located at http://www.interscience.wiley.com/jpages/1069-8299/
Citation
Communications In Numerical Methods In Engineering, 2003, v. 19 n. 10, p. 833-845 How to Cite?
AbstractA method is presented for controlling the convexity of interpolant curves based on a rational cubic interpolating function with quadratic denominator. The key idea is that the uniqueness of the interpolating function for the given data is replaced by the uniqueness of the interpolating function for the given data and the parameters, so that for the given data the shape of the interpolating curve can be modified by selecting suitable parameters. Necessary and sufficient conditions are given for adjusting the convexity of the interpolating curve for given data. Examples are given and the optimal error estimation is given. © 2003 John Wiley and Sons, Ltd.
Persistent Identifierhttp://hdl.handle.net/10722/75889
ISSN
2011 Impact Factor: 1.754
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorDuan, Qen_HK
dc.contributor.authorWang, Len_HK
dc.contributor.authorTwizell, EHen_HK
dc.date.accessioned2010-09-06T07:15:33Z-
dc.date.available2010-09-06T07:15:33Z-
dc.date.issued2003en_HK
dc.identifier.citationCommunications In Numerical Methods In Engineering, 2003, v. 19 n. 10, p. 833-845en_HK
dc.identifier.issn1069-8299en_HK
dc.identifier.urihttp://hdl.handle.net/10722/75889-
dc.description.abstractA method is presented for controlling the convexity of interpolant curves based on a rational cubic interpolating function with quadratic denominator. The key idea is that the uniqueness of the interpolating function for the given data is replaced by the uniqueness of the interpolating function for the given data and the parameters, so that for the given data the shape of the interpolating curve can be modified by selecting suitable parameters. Necessary and sufficient conditions are given for adjusting the convexity of the interpolating curve for given data. Examples are given and the optimal error estimation is given. © 2003 John Wiley and Sons, Ltd.en_HK
dc.languageengen_HK
dc.publisherJohn Wiley & Sons Ltd. The Journal's web site is located at http://www.interscience.wiley.com/jpages/1069-8299/en_HK
dc.relation.ispartofCommunications in Numerical Methods in Engineeringen_HK
dc.rightsCommunications in Numerical Methods in Engineering. Copyright © John Wiley & Sons Ltd.en_HK
dc.subjectConstrained interpolationen_HK
dc.subjectCurve designen_HK
dc.subjectError estimationen_HK
dc.subjectPreserving convexity interpolationen_HK
dc.subjectRational splineen_HK
dc.titleA novel approach to the convexity control of interpolant curvesen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=1069-8299&volume=19&spage=833&epage=845&date=2003&atitle=A+novel+approach+to+the+convexity+control+of+interpolant+curvesen_HK
dc.identifier.emailWang, L:lqwang@hkucc.hku.hken_HK
dc.identifier.authorityWang, L=rp00184en_HK
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1002/cnm.634en_HK
dc.identifier.scopuseid_2-s2.0-0242458467en_HK
dc.identifier.hkuros91447en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-0242458467&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume19en_HK
dc.identifier.issue10en_HK
dc.identifier.spage833en_HK
dc.identifier.epage845en_HK
dc.identifier.isiWOS:000186213400006-
dc.publisher.placeUnited Kingdomen_HK
dc.identifier.scopusauthoridDuan, Q=7005185761en_HK
dc.identifier.scopusauthoridWang, L=35235288500en_HK
dc.identifier.scopusauthoridTwizell, EH=7006036382en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats