File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: A new C2 rational interpolation based on function values and constrained control of the interpolant curves

TitleA new C2 rational interpolation based on function values and constrained control of the interpolant curves
Authors
KeywordsConstrained interpolation
Curve design
Error estimation
Rational spline
Issue Date2005
PublisherElsevier Inc. The Journal's web site is located at http://www.elsevier.com/locate/amc
Citation
Applied Mathematics And Computation, 2005, v. 161 n. 1, p. 311-322 How to Cite?
AbstractIn this paper a new method is developed to create a high-order smoothness interpolation using values of the function being interpolated. This is a kind of rational cubic interpolation with quadratic denominator. This rational spline not only belongs to C2 in the interpolating interval, but could also be used to constrain the shape of the interpolant curve such as to force it to be in the given region, all because of the selectable parameters in the rational spline itself. The more important achievement mathematically of this method is that the uniqueness of the interpolating function for the given data would be replaced by the uniqueness of the interpolating curve for the given data and the selected parameters. © 2004 Elsevier Inc. All rights reserved.
Persistent Identifierhttp://hdl.handle.net/10722/75685
ISSN
2015 Impact Factor: 1.345
2015 SCImago Journal Rankings: 1.008
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorDuan, Qen_HK
dc.contributor.authorWang, Len_HK
dc.contributor.authorTwizell, EHen_HK
dc.date.accessioned2010-09-06T07:13:34Z-
dc.date.available2010-09-06T07:13:34Z-
dc.date.issued2005en_HK
dc.identifier.citationApplied Mathematics And Computation, 2005, v. 161 n. 1, p. 311-322en_HK
dc.identifier.issn0096-3003en_HK
dc.identifier.urihttp://hdl.handle.net/10722/75685-
dc.description.abstractIn this paper a new method is developed to create a high-order smoothness interpolation using values of the function being interpolated. This is a kind of rational cubic interpolation with quadratic denominator. This rational spline not only belongs to C2 in the interpolating interval, but could also be used to constrain the shape of the interpolant curve such as to force it to be in the given region, all because of the selectable parameters in the rational spline itself. The more important achievement mathematically of this method is that the uniqueness of the interpolating function for the given data would be replaced by the uniqueness of the interpolating curve for the given data and the selected parameters. © 2004 Elsevier Inc. All rights reserved.en_HK
dc.languageengen_HK
dc.publisherElsevier Inc. The Journal's web site is located at http://www.elsevier.com/locate/amcen_HK
dc.relation.ispartofApplied Mathematics and Computationen_HK
dc.rightsApplied Mathematics and Computation. Copyright © Elsevier Inc.en_HK
dc.subjectConstrained interpolationen_HK
dc.subjectCurve designen_HK
dc.subjectError estimationen_HK
dc.subjectRational splineen_HK
dc.titleA new C2 rational interpolation based on function values and constrained control of the interpolant curvesen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0096-3003&volume=161&spage=311&epage=322&date=2005&atitle=A+new+C2+rational+interpolation+based+on+function+values+and+constrained+control+of+the+interpolant+curvesen_HK
dc.identifier.emailWang, L:lqwang@hkucc.hku.hken_HK
dc.identifier.authorityWang, L=rp00184en_HK
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1016/j.amc.2003.12.030en_HK
dc.identifier.scopuseid_2-s2.0-9544220661en_HK
dc.identifier.hkuros105863en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-9544220661&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume161en_HK
dc.identifier.issue1en_HK
dc.identifier.spage311en_HK
dc.identifier.epage322en_HK
dc.identifier.isiWOS:000226559000025-
dc.publisher.placeUnited Statesen_HK
dc.identifier.scopusauthoridDuan, Q=7005185761en_HK
dc.identifier.scopusauthoridWang, L=35235288500en_HK
dc.identifier.scopusauthoridTwizell, EH=7006036382en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats