File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1103/PhysRevE.77.026602
- Scopus: eid_2-s2.0-38949174013
- WOS: WOS:000253763800060
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Periodic waves in fiber Bragg gratings
Title | Periodic waves in fiber Bragg gratings |
---|---|
Authors | |
Issue Date | 2008 |
Publisher | American Physical Society. The Journal's web site is located at http://pre.aps.org |
Citation | Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), 2008, v. 77 n. 2, article no. 026602 How to Cite? |
Abstract | We construct two families of exact periodic solutions to the standard model of fiber Bragg grating (FBG) with Kerr nonlinearity. The solutions are named "sn" and "cn" waves, according to the elliptic functions used in their analytical representation. The sn wave exists only inside the FBG's spectral bandgap, while waves of the cn type may only exist at negative frequencies (ω<0), both inside and outside the bandgap. In the long-wave limit, the sn and cn families recover, respectively, the ordinary gap solitons, and (unstable) antidark and dark solitons. Stability of the periodic solutions is checked by direct numerical simulations and, in the case of the sn family, also through the calculation of instability growth rates for small perturbations. Although, rigorously speaking, all periodic solutions are unstable, a subfamily of practically stable sn waves, with a sufficiently large spatial period and ω>0, is identified. However, the sn waves with ω<0, as well as all cn solutions, are strongly unstable. © 2008 The American Physical Society. |
Persistent Identifier | http://hdl.handle.net/10722/75548 |
ISSN | 2014 Impact Factor: 2.288 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chow, KW | en_HK |
dc.contributor.author | Merhasin, IM | en_HK |
dc.contributor.author | Malomed, BA | en_HK |
dc.contributor.author | Nakkeeran, K | en_HK |
dc.contributor.author | Senthilnathan, K | en_HK |
dc.contributor.author | Wai, PKA | en_HK |
dc.date.accessioned | 2010-09-06T07:12:15Z | - |
dc.date.available | 2010-09-06T07:12:15Z | - |
dc.date.issued | 2008 | en_HK |
dc.identifier.citation | Physical Review E (Statistical, Nonlinear, and Soft Matter Physics), 2008, v. 77 n. 2, article no. 026602 | - |
dc.identifier.issn | 1539-3755 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/75548 | - |
dc.description.abstract | We construct two families of exact periodic solutions to the standard model of fiber Bragg grating (FBG) with Kerr nonlinearity. The solutions are named "sn" and "cn" waves, according to the elliptic functions used in their analytical representation. The sn wave exists only inside the FBG's spectral bandgap, while waves of the cn type may only exist at negative frequencies (ω<0), both inside and outside the bandgap. In the long-wave limit, the sn and cn families recover, respectively, the ordinary gap solitons, and (unstable) antidark and dark solitons. Stability of the periodic solutions is checked by direct numerical simulations and, in the case of the sn family, also through the calculation of instability growth rates for small perturbations. Although, rigorously speaking, all periodic solutions are unstable, a subfamily of practically stable sn waves, with a sufficiently large spatial period and ω>0, is identified. However, the sn waves with ω<0, as well as all cn solutions, are strongly unstable. © 2008 The American Physical Society. | en_HK |
dc.language | eng | en_HK |
dc.publisher | American Physical Society. The Journal's web site is located at http://pre.aps.org | en_HK |
dc.relation.ispartof | Physical Review E (Statistical, Nonlinear, and Soft Matter Physics) | - |
dc.title | Periodic waves in fiber Bragg gratings | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=1539-3755&volume=77&spage=026602 (8 pages)&epage=&date=2008&atitle=Periodic+waves+in+fiber+Bragg+gratings | en_HK |
dc.identifier.email | Chow, KW:kwchow@hku.hk | en_HK |
dc.identifier.authority | Chow, KW=rp00112 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1103/PhysRevE.77.026602 | en_HK |
dc.identifier.scopus | eid_2-s2.0-38949174013 | en_HK |
dc.identifier.hkuros | 143426 | en_HK |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-38949174013&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 77 | en_HK |
dc.identifier.issue | 2 | en_HK |
dc.identifier.spage | article no. 026602 | - |
dc.identifier.epage | article no. 026602 | - |
dc.identifier.eissn | 1550-2376 | - |
dc.identifier.isi | WOS:000253763800060 | - |
dc.publisher.place | United States | en_HK |
dc.identifier.scopusauthorid | Chow, KW=13605209900 | en_HK |
dc.identifier.scopusauthorid | Merhasin, IM=6602589502 | en_HK |
dc.identifier.scopusauthorid | Malomed, BA=35555126200 | en_HK |
dc.identifier.scopusauthorid | Nakkeeran, K=7004188157 | en_HK |
dc.identifier.scopusauthorid | Senthilnathan, K=6603370481 | en_HK |
dc.identifier.scopusauthorid | Wai, PKA=7005475453 | en_HK |
dc.identifier.issnl | 1539-3755 | - |