File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/j.jmaa.2007.12.033
- Scopus: eid_2-s2.0-39949085784
- WOS: WOS:000254880300052
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Chord power integrals and radial mean bodies
Title | Chord power integrals and radial mean bodies |
---|---|
Authors | |
Keywords | Chord power integrals Convex body Dual quermassintegrals Radial mean body |
Issue Date | 2008 |
Publisher | Academic Press. The Journal's web site is located at http://www.elsevier.com/locate/jmaa |
Citation | Journal Of Mathematical Analysis And Applications, 2008, v. 342 n. 1, p. 629-637 How to Cite? |
Abstract | In this paper, we obtain a formula relating the chord power integrals of a convex body K and the dual quermassintegrals of its radial pth mean body Rp K. With this, a relation among the chord power integrals of a convex body K under dilation transformations is found. As an interesting application, some geometric inequalities between the dual quermassintegrals of Rp K and the volume of K, which are equivalent to the isoperimetric-type inequalities of chord power integrals, are also established. © 2007 Elsevier Inc. All rights reserved. |
Persistent Identifier | http://hdl.handle.net/10722/75494 |
ISSN | 2023 Impact Factor: 1.2 2023 SCImago Journal Rankings: 0.816 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Xiong, G | en_HK |
dc.contributor.author | Cheung, WS | en_HK |
dc.date.accessioned | 2010-09-06T07:11:38Z | - |
dc.date.available | 2010-09-06T07:11:38Z | - |
dc.date.issued | 2008 | en_HK |
dc.identifier.citation | Journal Of Mathematical Analysis And Applications, 2008, v. 342 n. 1, p. 629-637 | en_HK |
dc.identifier.issn | 0022-247X | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/75494 | - |
dc.description.abstract | In this paper, we obtain a formula relating the chord power integrals of a convex body K and the dual quermassintegrals of its radial pth mean body Rp K. With this, a relation among the chord power integrals of a convex body K under dilation transformations is found. As an interesting application, some geometric inequalities between the dual quermassintegrals of Rp K and the volume of K, which are equivalent to the isoperimetric-type inequalities of chord power integrals, are also established. © 2007 Elsevier Inc. All rights reserved. | en_HK |
dc.language | eng | en_HK |
dc.publisher | Academic Press. The Journal's web site is located at http://www.elsevier.com/locate/jmaa | en_HK |
dc.relation.ispartof | Journal of Mathematical Analysis and Applications | en_HK |
dc.subject | Chord power integrals | en_HK |
dc.subject | Convex body | en_HK |
dc.subject | Dual quermassintegrals | en_HK |
dc.subject | Radial mean body | en_HK |
dc.title | Chord power integrals and radial mean bodies | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0022-247X&volume=342&spage=629&epage=637&date=2008&atitle=Chord+Power+Integrals+and+Radial+Mean+Bodies | en_HK |
dc.identifier.email | Cheung, WS:wscheung@hkucc.hku.hk | en_HK |
dc.identifier.authority | Cheung, WS=rp00678 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1016/j.jmaa.2007.12.033 | en_HK |
dc.identifier.scopus | eid_2-s2.0-39949085784 | en_HK |
dc.identifier.hkuros | 141668 | en_HK |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-39949085784&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 342 | en_HK |
dc.identifier.issue | 1 | en_HK |
dc.identifier.spage | 629 | en_HK |
dc.identifier.epage | 637 | en_HK |
dc.identifier.eissn | 1096-0813 | - |
dc.identifier.isi | WOS:000254880300052 | - |
dc.publisher.place | United States | en_HK |
dc.identifier.scopusauthorid | Xiong, G=17436359500 | en_HK |
dc.identifier.scopusauthorid | Cheung, WS=7202743118 | en_HK |
dc.identifier.issnl | 0022-247X | - |