File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1504/IJDMB.2010.033524
- Scopus: eid_2-s2.0-77953156609
- PMID: 20681483
- WOS: WOS:000280011300006
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: A Weighted Local Least Squares Imputation method for missing value estimation in microarray gene expression data
Title | A Weighted Local Least Squares Imputation method for missing value estimation in microarray gene expression data | ||||||
---|---|---|---|---|---|---|---|
Authors | |||||||
Keywords | Gene expression data analysis Missing value imputation Vector angle Weighted Local Least Square Imputation WLLSI | ||||||
Issue Date | 2010 | ||||||
Publisher | Inderscience Publishers. The Journal's web site is located at http://www.inderscience.com/ijdmb | ||||||
Citation | International Journal Of Data Mining And Bioinformatics, 2010, v. 4 n. 3, p. 331-347 How to Cite? | ||||||
Abstract | Many clustering techniques and classification methods for analysing microarray data require a complete dataset. However, very often gene expression datasets contain missing values due to various reasons. In this paper, we first propose to use vector angle as a measurement for the similarity between genes. We then propose the Weighted Local Least Square Imputation (WLLSI) method for missing values estimation. Numerical results on both synthetic data and real microarray data indicate that WLLSI method is more robust. The imputation methods are then applied to a breast cancer dataset and interesting results are obtained. Copyright© 2010 Inderscience Enterprises Ltd. | ||||||
Persistent Identifier | http://hdl.handle.net/10722/75469 | ||||||
ISSN | 2023 Impact Factor: 0.2 2023 SCImago Journal Rankings: 0.173 | ||||||
ISI Accession Number ID |
Funding Information: The authors would like to thank the three anonymous referees for their helpful comments and suggestions in the revision of the paper and Dr. Shigeyuki Oba for providing datasets. Wai-Ki Ching is supported in part by RGC Grant 7017/07P, HKU Strategic Research Theme Fund on Computational Physics and Numerical Methods, Hung Hing Ying Physical Research Fund, HKU GRCC Grants Nos. 10206647, 10206483 and 10206147. | ||||||
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ching, WK | en_HK |
dc.contributor.author | Li, L | en_HK |
dc.contributor.author | Tsing, NK | en_HK |
dc.contributor.author | Tai, CW | en_HK |
dc.contributor.author | Ng, TW | en_HK |
dc.contributor.author | Wong, AS | en_HK |
dc.contributor.author | Cheng, KW | en_HK |
dc.date.accessioned | 2010-09-06T07:11:24Z | - |
dc.date.available | 2010-09-06T07:11:24Z | - |
dc.date.issued | 2010 | en_HK |
dc.identifier.citation | International Journal Of Data Mining And Bioinformatics, 2010, v. 4 n. 3, p. 331-347 | en_HK |
dc.identifier.issn | 1748-5673 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/75469 | - |
dc.description.abstract | Many clustering techniques and classification methods for analysing microarray data require a complete dataset. However, very often gene expression datasets contain missing values due to various reasons. In this paper, we first propose to use vector angle as a measurement for the similarity between genes. We then propose the Weighted Local Least Square Imputation (WLLSI) method for missing values estimation. Numerical results on both synthetic data and real microarray data indicate that WLLSI method is more robust. The imputation methods are then applied to a breast cancer dataset and interesting results are obtained. Copyright© 2010 Inderscience Enterprises Ltd. | en_HK |
dc.language | eng | en_HK |
dc.publisher | Inderscience Publishers. The Journal's web site is located at http://www.inderscience.com/ijdmb | en_HK |
dc.relation.ispartof | International Journal of Data Mining and Bioinformatics | en_HK |
dc.subject | Gene expression data analysis | en_HK |
dc.subject | Missing value imputation | en_HK |
dc.subject | Vector angle | en_HK |
dc.subject | Weighted Local Least Square Imputation | en_HK |
dc.subject | WLLSI | en_HK |
dc.subject.mesh | Gene Expression | en_HK |
dc.subject.mesh | Gene Expression Profiling - methods | en_HK |
dc.subject.mesh | Least-Squares Analysis | en_HK |
dc.subject.mesh | Oligonucleotide Array Sequence Analysis - methods | en_HK |
dc.title | A Weighted Local Least Squares Imputation method for missing value estimation in microarray gene expression data | en_HK |
dc.type | Article | en_HK |
dc.identifier.email | Ching, WK: wching@hku.hk | en_HK |
dc.identifier.email | Tsing, NK: nktsing@hku.hk | en_HK |
dc.identifier.email | Ng, TW: ngtw@hku.hk | en_HK |
dc.identifier.email | Wong, AS: awong1@hkucc.hku.hk | en_HK |
dc.identifier.authority | Ching, WK=rp00679 | en_HK |
dc.identifier.authority | Tsing, NK=rp00794 | en_HK |
dc.identifier.authority | Ng, TW=rp00768 | en_HK |
dc.identifier.authority | Wong, AS=rp00805 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1504/IJDMB.2010.033524 | en_HK |
dc.identifier.pmid | 20681483 | - |
dc.identifier.scopus | eid_2-s2.0-77953156609 | en_HK |
dc.identifier.hkuros | 170054 | en_HK |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-77953156609&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 4 | en_HK |
dc.identifier.issue | 3 | en_HK |
dc.identifier.spage | 331 | en_HK |
dc.identifier.epage | 347 | en_HK |
dc.identifier.isi | WOS:000280011300006 | - |
dc.publisher.place | United Kingdom | en_HK |
dc.identifier.scopusauthorid | Ching, WK=13310265500 | en_HK |
dc.identifier.scopusauthorid | Li, L=35329863000 | en_HK |
dc.identifier.scopusauthorid | Tsing, NK=6602663351 | en_HK |
dc.identifier.scopusauthorid | Tai, CW=36099428000 | en_HK |
dc.identifier.scopusauthorid | Ng, TW=7402229732 | en_HK |
dc.identifier.scopusauthorid | Wong, AS=23987963300 | en_HK |
dc.identifier.scopusauthorid | Cheng, KW=35081802000 | en_HK |
dc.identifier.issnl | 1748-5673 | - |