File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Non-extendable isomorphisms between affine varieties

TitleNon-extendable isomorphisms between affine varieties
Authors
Issue Date2002
PublisherElsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/jpaa
Citation
Journal Of Pure And Applied Algebra, 2002, v. 172 n. 2-3, p. 285-291 How to Cite?
AbstractIn this paper, we report several large classes of affine varieties (over an arbitrary field K of characteristic 0) with the following property: each variety in these classes has an isomorphic copy such that the corresponding isomorphism cannot be extended to an automorphism of the ambient affine space Kn. This implies, in particular, that each of these varieties has at least two inequivalent embeddings in Kn. The following application of our results seems interesting: we show that lines in K2 are distinguished among irreducible algebraic retracts by the property of having a unique embedding in K2. © 2001 Elsevier Science B.V. All rights reserved.
Persistent Identifierhttp://hdl.handle.net/10722/75446
ISSN
2015 Impact Factor: 0.669
2015 SCImago Journal Rankings: 0.990
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorShpilrain, Ven_HK
dc.contributor.authorYu, JTen_HK
dc.date.accessioned2010-09-06T07:11:11Z-
dc.date.available2010-09-06T07:11:11Z-
dc.date.issued2002en_HK
dc.identifier.citationJournal Of Pure And Applied Algebra, 2002, v. 172 n. 2-3, p. 285-291en_HK
dc.identifier.issn0022-4049en_HK
dc.identifier.urihttp://hdl.handle.net/10722/75446-
dc.description.abstractIn this paper, we report several large classes of affine varieties (over an arbitrary field K of characteristic 0) with the following property: each variety in these classes has an isomorphic copy such that the corresponding isomorphism cannot be extended to an automorphism of the ambient affine space Kn. This implies, in particular, that each of these varieties has at least two inequivalent embeddings in Kn. The following application of our results seems interesting: we show that lines in K2 are distinguished among irreducible algebraic retracts by the property of having a unique embedding in K2. © 2001 Elsevier Science B.V. All rights reserved.en_HK
dc.languageengen_HK
dc.publisherElsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/jpaaen_HK
dc.relation.ispartofJournal of Pure and Applied Algebraen_HK
dc.rightsJournal of Pure and Applied Algebra. Copyright © Elsevier BV.en_HK
dc.titleNon-extendable isomorphisms between affine varietiesen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0022-4049&volume=172 no2-3&spage=285&epage=291&date=2002&atitle=Non-extendable+isomorphisms+between+affine+varietiesen_HK
dc.identifier.emailYu, JT:yujt@hku.hken_HK
dc.identifier.authorityYu, JT=rp00834en_HK
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1016/S0022-4049(01)00166-9en_HK
dc.identifier.scopuseid_2-s2.0-0037167091en_HK
dc.identifier.hkuros75658en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-0037167091&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume172en_HK
dc.identifier.issue2-3en_HK
dc.identifier.spage285en_HK
dc.identifier.epage291en_HK
dc.identifier.isiWOS:000176265000012-
dc.publisher.placeNetherlandsen_HK
dc.identifier.scopusauthoridShpilrain, V=6603904879en_HK
dc.identifier.scopusauthoridYu, JT=7405530208en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats