File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1007/s003730170060
- Scopus: eid_2-s2.0-0042627199
- WOS: WOS:000168577900011
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Asymptotic upper bounds for ramsey functions
Title | Asymptotic upper bounds for ramsey functions |
---|---|
Authors | |
Keywords | Average degree Convex function Independence number Ramsey number |
Issue Date | 2001 |
Publisher | Springer Japan. The Journal's web site is located at http://link.springer-ny.com/link/service/journals/00373/index.htm |
Citation | Graphs And Combinatorics, 2001, v. 17 n. 1, p. 123-128 How to Cite? |
Abstract | We show that for any graph G with N vertices and average degree d, if the average degree of any neighborhood induced subgraph is at most a, then the independence number of G is at least Nfa+1(d), where fa+1(d)=∫0 1(((1-t) 1/(a+1))/(a+1+(d-a-1)t))dt. Based on this result, we prove that for any fixed k and l, there holds r(Kk+K̄l,Kn)≤ (l+o(1))nk/(logn)k-1. In particular, r(Kk, Kn)≤(1+o(1))nk-1/(log n)k-2. © Springer-Verlag 2001. |
Persistent Identifier | http://hdl.handle.net/10722/75441 |
ISSN | 2023 Impact Factor: 0.6 2023 SCImago Journal Rankings: 0.511 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Li, Y | en_HK |
dc.contributor.author | Rousseau, CC | en_HK |
dc.contributor.author | Zang, W | en_HK |
dc.date.accessioned | 2010-09-06T07:11:08Z | - |
dc.date.available | 2010-09-06T07:11:08Z | - |
dc.date.issued | 2001 | en_HK |
dc.identifier.citation | Graphs And Combinatorics, 2001, v. 17 n. 1, p. 123-128 | en_HK |
dc.identifier.issn | 0911-0119 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/75441 | - |
dc.description.abstract | We show that for any graph G with N vertices and average degree d, if the average degree of any neighborhood induced subgraph is at most a, then the independence number of G is at least Nfa+1(d), where fa+1(d)=∫0 1(((1-t) 1/(a+1))/(a+1+(d-a-1)t))dt. Based on this result, we prove that for any fixed k and l, there holds r(Kk+K̄l,Kn)≤ (l+o(1))nk/(logn)k-1. In particular, r(Kk, Kn)≤(1+o(1))nk-1/(log n)k-2. © Springer-Verlag 2001. | en_HK |
dc.language | eng | en_HK |
dc.publisher | Springer Japan. The Journal's web site is located at http://link.springer-ny.com/link/service/journals/00373/index.htm | en_HK |
dc.relation.ispartof | Graphs and Combinatorics | en_HK |
dc.subject | Average degree | en_HK |
dc.subject | Convex function | en_HK |
dc.subject | Independence number | en_HK |
dc.subject | Ramsey number | en_HK |
dc.title | Asymptotic upper bounds for ramsey functions | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0911-0119&volume=17&spage=123&epage=128&date=2001&atitle=Asymptotic+Upper+Bounds+for+Ramsey+Functions | en_HK |
dc.identifier.email | Zang, W:wzang@maths.hku.hk | en_HK |
dc.identifier.authority | Zang, W=rp00839 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1007/s003730170060 | - |
dc.identifier.scopus | eid_2-s2.0-0042627199 | en_HK |
dc.identifier.hkuros | 63195 | en_HK |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-0042627199&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 17 | en_HK |
dc.identifier.issue | 1 | en_HK |
dc.identifier.spage | 123 | en_HK |
dc.identifier.epage | 128 | en_HK |
dc.identifier.isi | WOS:000168577900011 | - |
dc.publisher.place | Japan | en_HK |
dc.identifier.scopusauthorid | Li, Y=7502087425 | en_HK |
dc.identifier.scopusauthorid | Rousseau, CC=7102137402 | en_HK |
dc.identifier.scopusauthorid | Zang, W=7005740804 | en_HK |
dc.identifier.issnl | 0911-0119 | - |