File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1353/ajm.2003.0030
- Scopus: eid_2-s2.0-0141430081
- WOS: WOS:000185491400002
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Some remarks on the local moduli of tangent bundles over complex surfaces
Title | Some remarks on the local moduli of tangent bundles over complex surfaces |
---|---|
Authors | |
Issue Date | 2003 |
Publisher | The Johns Hopkins University Press. The Journal's web site is located at http://www.press.jhu.edu/journals/american_journal_of_mathematics/index.html |
Citation | American Journal Of Mathematics, 2003, v. 125 n. 5, p. 1029-1035 How to Cite? |
Abstract | Using the Hirzebruch's Riemann-Roch formula for endomorphism bundles over a compact complex two-fold we prove that the tangent bundle of a complex surface M of general type admits a nontrivial trace-free deformation, unless M is holomorphically covered by the euclidean ball. It follows that the tangent bundle of the Mostow-Siu surface, which is a Kähler surface with a negative definite curvature tensor, does have a nontrivial trace-free moduli. Among some other results we also point out a relationship between the Kuranishi obstruction and symmetric holomorphic two tensors on a complex surface. |
Persistent Identifier | http://hdl.handle.net/10722/75383 |
ISSN | 2023 Impact Factor: 1.7 2023 SCImago Journal Rankings: 2.094 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Cheung, WS | en_HK |
dc.contributor.author | Wong, B | en_HK |
dc.contributor.author | Yau, SST | en_HK |
dc.date.accessioned | 2010-09-06T07:10:36Z | - |
dc.date.available | 2010-09-06T07:10:36Z | - |
dc.date.issued | 2003 | en_HK |
dc.identifier.citation | American Journal Of Mathematics, 2003, v. 125 n. 5, p. 1029-1035 | en_HK |
dc.identifier.issn | 0002-9327 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/75383 | - |
dc.description.abstract | Using the Hirzebruch's Riemann-Roch formula for endomorphism bundles over a compact complex two-fold we prove that the tangent bundle of a complex surface M of general type admits a nontrivial trace-free deformation, unless M is holomorphically covered by the euclidean ball. It follows that the tangent bundle of the Mostow-Siu surface, which is a Kähler surface with a negative definite curvature tensor, does have a nontrivial trace-free moduli. Among some other results we also point out a relationship between the Kuranishi obstruction and symmetric holomorphic two tensors on a complex surface. | en_HK |
dc.language | eng | en_HK |
dc.publisher | The Johns Hopkins University Press. The Journal's web site is located at http://www.press.jhu.edu/journals/american_journal_of_mathematics/index.html | en_HK |
dc.relation.ispartof | American Journal of Mathematics | en_HK |
dc.title | Some remarks on the local moduli of tangent bundles over complex surfaces | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0002-9327&volume=125&spage=1029&epage=1035&date=2003&atitle=Some+Remarks+on+the+Local+Moduli+of+Tangent+Bundles+over+Complex+Surfaces | en_HK |
dc.identifier.email | Cheung, WS:wscheung@hkucc.hku.hk | en_HK |
dc.identifier.authority | Cheung, WS=rp00678 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1353/ajm.2003.0030 | - |
dc.identifier.scopus | eid_2-s2.0-0141430081 | en_HK |
dc.identifier.hkuros | 85061 | en_HK |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-0141430081&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 125 | en_HK |
dc.identifier.issue | 5 | en_HK |
dc.identifier.spage | 1029 | en_HK |
dc.identifier.epage | 1035 | en_HK |
dc.identifier.isi | WOS:000185491400002 | - |
dc.publisher.place | United States | en_HK |
dc.identifier.scopusauthorid | Cheung, WS=7202743118 | en_HK |
dc.identifier.scopusauthorid | Wong, B=7402023236 | en_HK |
dc.identifier.scopusauthorid | Yau, SST=7202478328 | en_HK |
dc.identifier.issnl | 0002-9327 | - |