File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Some remarks on the local moduli of tangent bundles over complex surfaces

TitleSome remarks on the local moduli of tangent bundles over complex surfaces
Authors
Issue Date2003
PublisherThe Johns Hopkins University Press. The Journal's web site is located at http://www.press.jhu.edu/journals/american_journal_of_mathematics/index.html
Citation
American Journal Of Mathematics, 2003, v. 125 n. 5, p. 1029-1035 How to Cite?
AbstractUsing the Hirzebruch's Riemann-Roch formula for endomorphism bundles over a compact complex two-fold we prove that the tangent bundle of a complex surface M of general type admits a nontrivial trace-free deformation, unless M is holomorphically covered by the euclidean ball. It follows that the tangent bundle of the Mostow-Siu surface, which is a Kähler surface with a negative definite curvature tensor, does have a nontrivial trace-free moduli. Among some other results we also point out a relationship between the Kuranishi obstruction and symmetric holomorphic two tensors on a complex surface.
Persistent Identifierhttp://hdl.handle.net/10722/75383
ISSN
2015 Impact Factor: 1.118
2015 SCImago Journal Rankings: 3.513
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorCheung, WSen_HK
dc.contributor.authorWong, Ben_HK
dc.contributor.authorYau, SSTen_HK
dc.date.accessioned2010-09-06T07:10:36Z-
dc.date.available2010-09-06T07:10:36Z-
dc.date.issued2003en_HK
dc.identifier.citationAmerican Journal Of Mathematics, 2003, v. 125 n. 5, p. 1029-1035en_HK
dc.identifier.issn0002-9327en_HK
dc.identifier.urihttp://hdl.handle.net/10722/75383-
dc.description.abstractUsing the Hirzebruch's Riemann-Roch formula for endomorphism bundles over a compact complex two-fold we prove that the tangent bundle of a complex surface M of general type admits a nontrivial trace-free deformation, unless M is holomorphically covered by the euclidean ball. It follows that the tangent bundle of the Mostow-Siu surface, which is a Kähler surface with a negative definite curvature tensor, does have a nontrivial trace-free moduli. Among some other results we also point out a relationship between the Kuranishi obstruction and symmetric holomorphic two tensors on a complex surface.en_HK
dc.languageengen_HK
dc.publisherThe Johns Hopkins University Press. The Journal's web site is located at http://www.press.jhu.edu/journals/american_journal_of_mathematics/index.htmlen_HK
dc.relation.ispartofAmerican Journal of Mathematicsen_HK
dc.titleSome remarks on the local moduli of tangent bundles over complex surfacesen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0002-9327&volume=125&spage=1029&epage=1035&date=2003&atitle=Some+Remarks+on+the+Local+Moduli+of+Tangent+Bundles+over+Complex+Surfacesen_HK
dc.identifier.emailCheung, WS:wscheung@hkucc.hku.hken_HK
dc.identifier.authorityCheung, WS=rp00678en_HK
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1353/ajm.2003.0030-
dc.identifier.scopuseid_2-s2.0-0141430081en_HK
dc.identifier.hkuros85061en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-0141430081&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume125en_HK
dc.identifier.issue5en_HK
dc.identifier.spage1029en_HK
dc.identifier.epage1035en_HK
dc.identifier.isiWOS:000185491400002-
dc.publisher.placeUnited Statesen_HK
dc.identifier.scopusauthoridCheung, WS=7202743118en_HK
dc.identifier.scopusauthoridWong, B=7402023236en_HK
dc.identifier.scopusauthoridYau, SST=7202478328en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats