File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Fast inversion of triangular Toeplitz matrices

TitleFast inversion of triangular Toeplitz matrices
Authors
KeywordsFast cosine transform
Fast Fourier transform
Interpolation
Triangular Toeplitz matrix
Issue Date2004
PublisherElsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/tcs
Citation
Theoretical Computer Science, 2004, v. 315 n. 2-3, p. 511-523 How to Cite?
AbstractIn this paper, we present an approximate inversion method for triangular Toeplitz matrices based on trigonometric polynomial interpolation. To obtain an approximate inverse of high accuracy for a triangular Toeplitz matrix of size n, our algorithm requires two fast Fourier transforms (FFTs) and one fast cosine transform of 2n-vectors. We then revise the approximate method proposed by Bini (SIAM J. Comput. 13 (1984) 268). The complexity of the revised Bini algorithm is two FFTs of 2n-vectors. © 2004 Published by Elsevier B.V.
Persistent Identifierhttp://hdl.handle.net/10722/75203
ISSN
2015 Impact Factor: 0.643
2015 SCImago Journal Rankings: 0.720
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorLin, FRen_HK
dc.contributor.authorChing, WKen_HK
dc.contributor.authorNg, MKen_HK
dc.date.accessioned2010-09-06T07:08:55Z-
dc.date.available2010-09-06T07:08:55Z-
dc.date.issued2004en_HK
dc.identifier.citationTheoretical Computer Science, 2004, v. 315 n. 2-3, p. 511-523en_HK
dc.identifier.issn0304-3975en_HK
dc.identifier.urihttp://hdl.handle.net/10722/75203-
dc.description.abstractIn this paper, we present an approximate inversion method for triangular Toeplitz matrices based on trigonometric polynomial interpolation. To obtain an approximate inverse of high accuracy for a triangular Toeplitz matrix of size n, our algorithm requires two fast Fourier transforms (FFTs) and one fast cosine transform of 2n-vectors. We then revise the approximate method proposed by Bini (SIAM J. Comput. 13 (1984) 268). The complexity of the revised Bini algorithm is two FFTs of 2n-vectors. © 2004 Published by Elsevier B.V.en_HK
dc.languageengen_HK
dc.publisherElsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/tcsen_HK
dc.relation.ispartofTheoretical Computer Scienceen_HK
dc.rightsTheoretical Computer Science. Copyright © Elsevier BV.en_HK
dc.subjectFast cosine transformen_HK
dc.subjectFast Fourier transformen_HK
dc.subjectInterpolationen_HK
dc.subjectTriangular Toeplitz matrixen_HK
dc.titleFast inversion of triangular Toeplitz matricesen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0304-3975&volume=315 no2-3&spage=511&epage=523&date=2004&atitle=Fast+inversion+of+triangular+Toeplitz+matricesen_HK
dc.identifier.emailChing, WK:wching@hku.hken_HK
dc.identifier.authorityChing, WK=rp00679en_HK
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1016/j.tcs.2004.01.005en_HK
dc.identifier.scopuseid_2-s2.0-2042541397en_HK
dc.identifier.hkuros97964en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-2042541397&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume315en_HK
dc.identifier.issue2-3en_HK
dc.identifier.spage511en_HK
dc.identifier.epage523en_HK
dc.identifier.isiWOS:000221353000010-
dc.publisher.placeNetherlandsen_HK
dc.identifier.scopusauthoridLin, FR=7402777425en_HK
dc.identifier.scopusauthoridChing, WK=13310265500en_HK
dc.identifier.scopusauthoridNg, MK=34571761900en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats