File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/j.jalgebra.2004.07.006
- Scopus: eid_2-s2.0-4644238310
- WOS: WOS:000224441800009
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: On generalized cancellation problem
Title | On generalized cancellation problem |
---|---|
Authors | |
Issue Date | 2004 |
Publisher | Academic Press. The Journal's web site is located at http://www.elsevier.com/locate/jalgebra |
Citation | Journal Of Algebra, 2004, v. 281 n. 1, p. 161-166 How to Cite? |
Abstract | A well-known cancellation problem of Zariski asks whether for two given domains (fields) K1 and K2, an isomorphism of K1 [t] (K (t)) and K2 [t] (K1 (t)) implies an isomorphism of K1 and K1. In this paper, we address a related problem: whether the ring (field) embedding of K1 [t] (K1 (t)) into K2 [t] (K1 (t)) implies the ring (field) embedding of K1 into K2? Our main result is affirmative: if K1 and K2 are arbitrary domains (fields) of the finite transcendence degree and K1 [t] (K1 (t)) can be embedded into K2 [t] (K2 (t)) then K1 can be embedded into K1. As a consequence, we answer a question of Abhyankar, Eakin and Heinzer [J. Algebra 23 (1972) 310-342]. © 2004 Elsevier Inc. All rights reserved. |
Persistent Identifier | http://hdl.handle.net/10722/75200 |
ISSN | 2023 Impact Factor: 0.8 2023 SCImago Journal Rankings: 1.023 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Belov, A | en_HK |
dc.contributor.author | MakarLimanov, L | en_HK |
dc.contributor.author | Yu, JT | en_HK |
dc.date.accessioned | 2010-09-06T07:08:53Z | - |
dc.date.available | 2010-09-06T07:08:53Z | - |
dc.date.issued | 2004 | en_HK |
dc.identifier.citation | Journal Of Algebra, 2004, v. 281 n. 1, p. 161-166 | en_HK |
dc.identifier.issn | 0021-8693 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/75200 | - |
dc.description.abstract | A well-known cancellation problem of Zariski asks whether for two given domains (fields) K1 and K2, an isomorphism of K1 [t] (K (t)) and K2 [t] (K1 (t)) implies an isomorphism of K1 and K1. In this paper, we address a related problem: whether the ring (field) embedding of K1 [t] (K1 (t)) into K2 [t] (K1 (t)) implies the ring (field) embedding of K1 into K2? Our main result is affirmative: if K1 and K2 are arbitrary domains (fields) of the finite transcendence degree and K1 [t] (K1 (t)) can be embedded into K2 [t] (K2 (t)) then K1 can be embedded into K1. As a consequence, we answer a question of Abhyankar, Eakin and Heinzer [J. Algebra 23 (1972) 310-342]. © 2004 Elsevier Inc. All rights reserved. | en_HK |
dc.language | eng | en_HK |
dc.publisher | Academic Press. The Journal's web site is located at http://www.elsevier.com/locate/jalgebra | en_HK |
dc.relation.ispartof | Journal of Algebra | en_HK |
dc.title | On generalized cancellation problem | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0021-8693&volume=281 no1&spage=161&epage=166&date=2004&atitle=On+generalized+cancellation+problem | en_HK |
dc.identifier.email | Yu, JT:yujt@hku.hk | en_HK |
dc.identifier.authority | Yu, JT=rp00834 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1016/j.jalgebra.2004.07.006 | en_HK |
dc.identifier.scopus | eid_2-s2.0-4644238310 | en_HK |
dc.identifier.hkuros | 97906 | en_HK |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-4644238310&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 281 | en_HK |
dc.identifier.issue | 1 | en_HK |
dc.identifier.spage | 161 | en_HK |
dc.identifier.epage | 166 | en_HK |
dc.identifier.isi | WOS:000224441800009 | - |
dc.publisher.place | United States | en_HK |
dc.identifier.scopusauthorid | Belov, A=7202831988 | en_HK |
dc.identifier.scopusauthorid | MakarLimanov, L=6603475677 | en_HK |
dc.identifier.scopusauthorid | Yu, JT=7405530208 | en_HK |
dc.identifier.issnl | 0021-8693 | - |