File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1023/A:1009784115916
- Scopus: eid_2-s2.0-0007364709
- WOS: WOS:000075683800001
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Proof of Toft's conjecture: Every graph containing no fully odd K4 is 3-colorable
Title | Proof of Toft's conjecture: Every graph containing no fully odd K4 is 3-colorable |
---|---|
Authors | |
Keywords | Chromatic number Graph coloring Minor Polynomial time algorithm Subdivision |
Issue Date | 1998 |
Publisher | Springer Verlag Dordrecht. The Journal's web site is located at http://springerlink.metapress.com/openurl.asp?genre=journal&issn=1382-6905 |
Citation | Journal Of Combinatorial Optimization, 1998, v. 2 n. 2, p. 117-188 How to Cite? |
Abstract | A fully odd K4 is a subdivision of K4 such that each of the six edges of the K4 is subdivided into a path of odd length. In 1974, Toft conjectured that every graph containing no fully odd K4 can be vertex-colored with three colors. The purpose of this paper is to prove Toft's conjecture. © 1998 Kluwer Academic Publishers. |
Persistent Identifier | http://hdl.handle.net/10722/75159 |
ISSN | 2023 Impact Factor: 0.9 2023 SCImago Journal Rankings: 0.370 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zang, W | en_HK |
dc.date.accessioned | 2010-09-06T07:08:30Z | - |
dc.date.available | 2010-09-06T07:08:30Z | - |
dc.date.issued | 1998 | en_HK |
dc.identifier.citation | Journal Of Combinatorial Optimization, 1998, v. 2 n. 2, p. 117-188 | en_HK |
dc.identifier.issn | 1382-6905 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/75159 | - |
dc.description.abstract | A fully odd K4 is a subdivision of K4 such that each of the six edges of the K4 is subdivided into a path of odd length. In 1974, Toft conjectured that every graph containing no fully odd K4 can be vertex-colored with three colors. The purpose of this paper is to prove Toft's conjecture. © 1998 Kluwer Academic Publishers. | en_HK |
dc.language | eng | en_HK |
dc.publisher | Springer Verlag Dordrecht. The Journal's web site is located at http://springerlink.metapress.com/openurl.asp?genre=journal&issn=1382-6905 | en_HK |
dc.relation.ispartof | Journal of Combinatorial Optimization | en_HK |
dc.subject | Chromatic number | en_HK |
dc.subject | Graph coloring | en_HK |
dc.subject | Minor | en_HK |
dc.subject | Polynomial time algorithm | en_HK |
dc.subject | Subdivision | en_HK |
dc.title | Proof of Toft's conjecture: Every graph containing no fully odd K4 is 3-colorable | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=1382-6905&volume=2&spage=117&epage=188&date=1998&atitle=Proof+of+Toft%27s+conjecture:+every+graph+containing+no+fully+odd+K4+is+3-colorable | en_HK |
dc.identifier.email | Zang, W:wzang@maths.hku.hk | en_HK |
dc.identifier.authority | Zang, W=rp00839 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1023/A:1009784115916 | - |
dc.identifier.scopus | eid_2-s2.0-0007364709 | en_HK |
dc.identifier.hkuros | 35074 | en_HK |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-0007364709&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 2 | en_HK |
dc.identifier.issue | 2 | en_HK |
dc.identifier.spage | 117 | en_HK |
dc.identifier.epage | 188 | en_HK |
dc.identifier.isi | WOS:000075683800001 | - |
dc.publisher.place | Netherlands | en_HK |
dc.identifier.scopusauthorid | Zang, W=7005740804 | en_HK |
dc.identifier.issnl | 1382-6905 | - |