File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Proof of Toft's conjecture: Every graph containing no fully odd K4 is 3-colorable

TitleProof of Toft's conjecture: Every graph containing no fully odd K4 is 3-colorable
Authors
KeywordsChromatic number
Graph coloring
Minor
Polynomial time algorithm
Subdivision
Issue Date1998
PublisherSpringer Verlag Dordrecht. The Journal's web site is located at http://springerlink.metapress.com/openurl.asp?genre=journal&issn=1382-6905
Citation
Journal Of Combinatorial Optimization, 1998, v. 2 n. 2, p. 117-188 How to Cite?
AbstractA fully odd K4 is a subdivision of K4 such that each of the six edges of the K4 is subdivided into a path of odd length. In 1974, Toft conjectured that every graph containing no fully odd K4 can be vertex-colored with three colors. The purpose of this paper is to prove Toft's conjecture. © 1998 Kluwer Academic Publishers.
Persistent Identifierhttp://hdl.handle.net/10722/75159
ISSN
2015 Impact Factor: 1.08
2015 SCImago Journal Rankings: 1.093
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorZang, Wen_HK
dc.date.accessioned2010-09-06T07:08:30Z-
dc.date.available2010-09-06T07:08:30Z-
dc.date.issued1998en_HK
dc.identifier.citationJournal Of Combinatorial Optimization, 1998, v. 2 n. 2, p. 117-188en_HK
dc.identifier.issn1382-6905en_HK
dc.identifier.urihttp://hdl.handle.net/10722/75159-
dc.description.abstractA fully odd K4 is a subdivision of K4 such that each of the six edges of the K4 is subdivided into a path of odd length. In 1974, Toft conjectured that every graph containing no fully odd K4 can be vertex-colored with three colors. The purpose of this paper is to prove Toft's conjecture. © 1998 Kluwer Academic Publishers.en_HK
dc.languageengen_HK
dc.publisherSpringer Verlag Dordrecht. The Journal's web site is located at http://springerlink.metapress.com/openurl.asp?genre=journal&issn=1382-6905en_HK
dc.relation.ispartofJournal of Combinatorial Optimizationen_HK
dc.subjectChromatic numberen_HK
dc.subjectGraph coloringen_HK
dc.subjectMinoren_HK
dc.subjectPolynomial time algorithmen_HK
dc.subjectSubdivisionen_HK
dc.titleProof of Toft's conjecture: Every graph containing no fully odd K4 is 3-colorableen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=1382-6905&volume=2&spage=117&epage=188&date=1998&atitle=Proof+of+Toft%27s+conjecture:+every+graph+containing+no+fully+odd+K4+is+3-colorableen_HK
dc.identifier.emailZang, W:wzang@maths.hku.hken_HK
dc.identifier.authorityZang, W=rp00839en_HK
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1023/A:1009784115916-
dc.identifier.scopuseid_2-s2.0-0007364709en_HK
dc.identifier.hkuros35074en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-0007364709&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume2en_HK
dc.identifier.issue2en_HK
dc.identifier.spage117en_HK
dc.identifier.epage188en_HK
dc.identifier.isiWOS:000075683800001-
dc.publisher.placeNetherlandsen_HK
dc.identifier.scopusauthoridZang, W=7005740804en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats