File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: A large sieve inequality of elliott-montgomery-vaughan type for automorphic forms and two applications

TitleA large sieve inequality of elliott-montgomery-vaughan type for automorphic forms and two applications
Authors
Issue Date2008
PublisherOxford University Press. The Journal's web site is located at http://imrn.oxfordjournals.org/
Citation
International Mathematics Research Notices, 2008, v. 2008 n. 1, article no. rnm162 How to Cite?
AbstractIn this paper, we establish a large sieve inequality of Elliott-Montgomery-Vaughan type for Fourier coefficients of newforms. As applications, we give a significant improvement on the principal result of Duke and Kowalski on Linnik's problem for modular forms and prove the upper part of the first conjecture of Montgomery-Vaughan in the context of automorphic L-functions. © The Author 2008. Published by Oxford University Press. All rights reserved.
Persistent Identifierhttp://hdl.handle.net/10722/75139
ISSN
2015 Impact Factor: 1.031
2015 SCImago Journal Rankings: 2.052
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorLau, YKen_HK
dc.contributor.authorWu, Jen_HK
dc.date.accessioned2010-09-06T07:08:18Z-
dc.date.available2010-09-06T07:08:18Z-
dc.date.issued2008en_HK
dc.identifier.citationInternational Mathematics Research Notices, 2008, v. 2008 n. 1, article no. rnm162en_HK
dc.identifier.issn1073-7928en_HK
dc.identifier.urihttp://hdl.handle.net/10722/75139-
dc.description.abstractIn this paper, we establish a large sieve inequality of Elliott-Montgomery-Vaughan type for Fourier coefficients of newforms. As applications, we give a significant improvement on the principal result of Duke and Kowalski on Linnik's problem for modular forms and prove the upper part of the first conjecture of Montgomery-Vaughan in the context of automorphic L-functions. © The Author 2008. Published by Oxford University Press. All rights reserved.en_HK
dc.languageengen_HK
dc.publisherOxford University Press. The Journal's web site is located at http://imrn.oxfordjournals.org/en_HK
dc.relation.ispartofInternational Mathematics Research Noticesen_HK
dc.rightsCreative Commons: Attribution 3.0 Hong Kong License-
dc.titleA large sieve inequality of elliott-montgomery-vaughan type for automorphic forms and two applicationsen_HK
dc.typeArticleen_HK
dc.identifier.emailLau, YK:yklau@maths.hku.hken_HK
dc.identifier.authorityLau, YK=rp00722en_HK
dc.description.naturepostprint-
dc.identifier.doi10.1093/imrn/rnm162en_HK
dc.identifier.scopuseid_2-s2.0-77955488383en_HK
dc.identifier.hkuros141731en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-77955488383&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume2008en_HK
dc.identifier.issue1en_HK
dc.identifier.spagearticle no. rnm162-
dc.identifier.epagearticle no. rnm162-
dc.identifier.eissn1687-0247-
dc.identifier.isiWOS:000263971400023-
dc.publisher.placeUnited Statesen_HK
dc.identifier.scopusauthoridLau, YK=35724053400en_HK
dc.identifier.scopusauthoridWu, J=36248039200en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats