File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/j.eswa.2005.07.032
- Scopus: eid_2-s2.0-33144464479
- WOS: WOS:000236048400017
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: A decision support system for production scheduling in an ion plating cell
Title | A decision support system for production scheduling in an ion plating cell |
---|---|
Authors | |
Keywords | Genetic algorithms Ion plating Machine loading Production scheduling |
Issue Date | 2006 |
Publisher | Pergamon. The Journal's web site is located at http://www.elsevier.com/locate/eswa |
Citation | Expert Systems With Applications, 2006, v. 30 n. 4, p. 727-738 How to Cite? |
Abstract | Production scheduling is one of the major issues in production planning and control of individual production units which lies on the heart of the performance of manufacturing organizations. Traditionally, production planning decision, especially scheduling, was resolved through intuition, experience, and judgment. Machine loading is one of the process planning and scheduling problems that involves a set of part types and a set of tools needed for processing the parts on a set of machines. It provides solution on assigning parts and allocating tools to optimize some predefined measures of productivity. In this study, Ion Plating industry requires similar approaches on allocating customer's order, i.e. grouping production jobs into batches and arrangement of machine loading sequencing for (i) producing products with better quality products; and (ii) enabling to meet due date to satisfy customers. The aim of this research is to develop a Machine Loading Sequencing Genetic Algorithm (MLSGA) model to improve the production efficiency by integrating a bin packing genetic algorithm model in an Ion Plating Cell (IPC), such that the entire system performance can be improved significantly. The proposed production scheduling system will take into account the quality of product and service, inventory holding cost, and machine utilization in Ion Plating. Genetic Algorithm is being chosen since it is one of the best heuristics algorithms on solving optimization problems. In the case studies, industrial data of a precious metal finishing company has been used to simulate the proposed models, and the computational results have been compared with the industrial data. The results of developed models demonstrated that less resource could be required by applying the proposed models in solving production scheduling problem in the IPC. © 2005 Elsevier Ltd. All rights reserved. |
Persistent Identifier | http://hdl.handle.net/10722/74524 |
ISSN | 2023 Impact Factor: 7.5 2023 SCImago Journal Rankings: 1.875 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chan, FTS | en_HK |
dc.contributor.author | Au, KC | en_HK |
dc.contributor.author | Chan, PLY | en_HK |
dc.date.accessioned | 2010-09-06T07:02:10Z | - |
dc.date.available | 2010-09-06T07:02:10Z | - |
dc.date.issued | 2006 | en_HK |
dc.identifier.citation | Expert Systems With Applications, 2006, v. 30 n. 4, p. 727-738 | en_HK |
dc.identifier.issn | 0957-4174 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/74524 | - |
dc.description.abstract | Production scheduling is one of the major issues in production planning and control of individual production units which lies on the heart of the performance of manufacturing organizations. Traditionally, production planning decision, especially scheduling, was resolved through intuition, experience, and judgment. Machine loading is one of the process planning and scheduling problems that involves a set of part types and a set of tools needed for processing the parts on a set of machines. It provides solution on assigning parts and allocating tools to optimize some predefined measures of productivity. In this study, Ion Plating industry requires similar approaches on allocating customer's order, i.e. grouping production jobs into batches and arrangement of machine loading sequencing for (i) producing products with better quality products; and (ii) enabling to meet due date to satisfy customers. The aim of this research is to develop a Machine Loading Sequencing Genetic Algorithm (MLSGA) model to improve the production efficiency by integrating a bin packing genetic algorithm model in an Ion Plating Cell (IPC), such that the entire system performance can be improved significantly. The proposed production scheduling system will take into account the quality of product and service, inventory holding cost, and machine utilization in Ion Plating. Genetic Algorithm is being chosen since it is one of the best heuristics algorithms on solving optimization problems. In the case studies, industrial data of a precious metal finishing company has been used to simulate the proposed models, and the computational results have been compared with the industrial data. The results of developed models demonstrated that less resource could be required by applying the proposed models in solving production scheduling problem in the IPC. © 2005 Elsevier Ltd. All rights reserved. | en_HK |
dc.language | eng | en_HK |
dc.publisher | Pergamon. The Journal's web site is located at http://www.elsevier.com/locate/eswa | en_HK |
dc.relation.ispartof | Expert Systems with Applications | en_HK |
dc.subject | Genetic algorithms | en_HK |
dc.subject | Ion plating | en_HK |
dc.subject | Machine loading | en_HK |
dc.subject | Production scheduling | en_HK |
dc.title | A decision support system for production scheduling in an ion plating cell | en_HK |
dc.type | Article | en_HK |
dc.identifier.email | Chan, FTS: ftschan@hkucc.hku.hk | en_HK |
dc.identifier.authority | Chan, FTS=rp00090 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1016/j.eswa.2005.07.032 | en_HK |
dc.identifier.scopus | eid_2-s2.0-33144464479 | en_HK |
dc.identifier.hkuros | 119207 | en_HK |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-33144464479&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 30 | en_HK |
dc.identifier.issue | 4 | en_HK |
dc.identifier.spage | 727 | en_HK |
dc.identifier.epage | 738 | en_HK |
dc.identifier.isi | WOS:000236048400017 | - |
dc.publisher.place | United Kingdom | en_HK |
dc.identifier.scopusauthorid | Chan, FTS=7202586517 | en_HK |
dc.identifier.scopusauthorid | Au, KC=8215393200 | en_HK |
dc.identifier.scopusauthorid | Chan, PLY=7403497715 | en_HK |
dc.identifier.issnl | 0957-4174 | - |