File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1111/1467-842X.00039
- Scopus: eid_2-s2.0-0042063374
- WOS: WOS:000075782100010
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: D-optimal axial designs for quadratic and cubic additive mixture models
Title | D-optimal axial designs for quadratic and cubic additive mixture models |
---|---|
Authors | |
Keywords | Additive mixture model Axial design D-optimality Uniformity of designs |
Issue Date | 1998 |
Publisher | Blackwell Publishing Asia. The Journal's web site is located at http://www.blackwellpublishing.com/journals/ANZS |
Citation | Australian And New Zealand Journal Of Statistics, 1998, v. 40 n. 3, p. 359-371 How to Cite? |
Abstract | The paper discusses D-optimal axial designs for the additive quadratic and cubic mixture models Σ 1≤i≤q(β ix i + β iix i 2) and Σ 1≤i≤q(β ix i + β iix i 2 + β iiix i 3), where x i ≥ 0, x 1 + ⋯ + x q = 1. For the quadratic model, a saturated symmetric axial design is used, in which support points are of the form (x 1, ⋯ , x q) = [1 -(q - 1)δ i, δ i, ⋯ , δ i], where i = 1, 2 and 0 ≤ δ 2 < δ 1 ≤ 1/(q - 1). It is proved that when 3 ≤ q ≤ 6, the above design is D-optimal if δ 2 = 0 and & δ 1 = 1/(q - 1), and when q ≥ 7 it is D-optimal if δ 2 = 0 and δ 1 = [5q - 1 - (9q 2 - 10q + 1) 1/2]/(4q 2). Similar results exist for the cubic model, with support points of the form (x 1,⋯, x q) = [1 - (q - 1)δ i, δ i,⋯, δ i], where i. = 1, 2, 3 and 0 = δ 3 < δ 2 < δ 1 ≤ 1/(q -1). The saturated D-optimal axial design and D-optimal design for the quadratic model are compared in terms of their efficiency and uniformity. © Australian Statistical Publishing Association Inc. 1998. Published by Blackwell Publishers Ltd. |
Persistent Identifier | http://hdl.handle.net/10722/74507 |
ISSN | 2023 Impact Factor: 0.8 2023 SCImago Journal Rankings: 0.344 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chan, LY | en_HK |
dc.contributor.author | Meng, JH | en_HK |
dc.contributor.author | Jiang, YC | en_HK |
dc.contributor.author | Guan, YN | en_HK |
dc.date.accessioned | 2010-09-06T07:02:00Z | - |
dc.date.available | 2010-09-06T07:02:00Z | - |
dc.date.issued | 1998 | en_HK |
dc.identifier.citation | Australian And New Zealand Journal Of Statistics, 1998, v. 40 n. 3, p. 359-371 | en_HK |
dc.identifier.issn | 1369-1473 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/74507 | - |
dc.description.abstract | The paper discusses D-optimal axial designs for the additive quadratic and cubic mixture models Σ 1≤i≤q(β ix i + β iix i 2) and Σ 1≤i≤q(β ix i + β iix i 2 + β iiix i 3), where x i ≥ 0, x 1 + ⋯ + x q = 1. For the quadratic model, a saturated symmetric axial design is used, in which support points are of the form (x 1, ⋯ , x q) = [1 -(q - 1)δ i, δ i, ⋯ , δ i], where i = 1, 2 and 0 ≤ δ 2 < δ 1 ≤ 1/(q - 1). It is proved that when 3 ≤ q ≤ 6, the above design is D-optimal if δ 2 = 0 and & δ 1 = 1/(q - 1), and when q ≥ 7 it is D-optimal if δ 2 = 0 and δ 1 = [5q - 1 - (9q 2 - 10q + 1) 1/2]/(4q 2). Similar results exist for the cubic model, with support points of the form (x 1,⋯, x q) = [1 - (q - 1)δ i, δ i,⋯, δ i], where i. = 1, 2, 3 and 0 = δ 3 < δ 2 < δ 1 ≤ 1/(q -1). The saturated D-optimal axial design and D-optimal design for the quadratic model are compared in terms of their efficiency and uniformity. © Australian Statistical Publishing Association Inc. 1998. Published by Blackwell Publishers Ltd. | en_HK |
dc.language | eng | en_HK |
dc.publisher | Blackwell Publishing Asia. The Journal's web site is located at http://www.blackwellpublishing.com/journals/ANZS | en_HK |
dc.relation.ispartof | Australian and New Zealand Journal of Statistics | en_HK |
dc.subject | Additive mixture model | en_HK |
dc.subject | Axial design | en_HK |
dc.subject | D-optimality | en_HK |
dc.subject | Uniformity of designs | en_HK |
dc.title | D-optimal axial designs for quadratic and cubic additive mixture models | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=1369-1473&volume=40&issue=3&spage=901&epage=913&date=1998&atitle=D-optimal+axial+designs+for+quadratic+and+cubic+additive+mixtures+model | en_HK |
dc.identifier.email | Chan, LY: plychan@hku.hk | en_HK |
dc.identifier.authority | Chan, LY=rp00093 | en_HK |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1111/1467-842X.00039 | - |
dc.identifier.scopus | eid_2-s2.0-0042063374 | en_HK |
dc.identifier.hkuros | 46720 | en_HK |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-0042063374&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 40 | en_HK |
dc.identifier.issue | 3 | en_HK |
dc.identifier.spage | 359 | en_HK |
dc.identifier.epage | 371 | en_HK |
dc.identifier.isi | WOS:000075782100010 | - |
dc.publisher.place | Australia | en_HK |
dc.identifier.scopusauthorid | Chan, LY=7403540482 | en_HK |
dc.identifier.scopusauthorid | Meng, JH=8394597400 | en_HK |
dc.identifier.scopusauthorid | Jiang, YC=55496934500 | en_HK |
dc.identifier.scopusauthorid | Guan, YN=7202924075 | en_HK |
dc.identifier.issnl | 1369-1473 | - |