File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Detection of machine failure: Hidden Markov Model approach

TitleDetection of machine failure: Hidden Markov Model approach
Authors
KeywordsHidden Markov Model
Machine failure
Statistical control process
Transition probability
Issue Date2009
PublisherPergamon. The Journal's web site is located at http://www.elsevier.com/locate/cie
Citation
Computers & Industrial Engineering, 2009, v. 57 n. 2, p. 608-619 How to Cite?
AbstractHidden Markov Models (HMMs) are widely used in applied sciences and engineering. The potential applications in manufacturing industries have not yet been fully explored. In this paper, we propose to apply HMM to detect machine failure in process control. We propose models for both cases of indistinguishable production units and distinguishable production units. Numerical examples are given to illustrate the effectiveness of the proposed models. © 2008 Elsevier Ltd. All rights reserved.
Persistent Identifierhttp://hdl.handle.net/10722/74486
ISSN
2015 Impact Factor: 2.086
2015 SCImago Journal Rankings: 1.630
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorTai, AHen_HK
dc.contributor.authorChing, WKen_HK
dc.contributor.authorChan, LYen_HK
dc.date.accessioned2010-09-06T07:01:48Z-
dc.date.available2010-09-06T07:01:48Z-
dc.date.issued2009en_HK
dc.identifier.citationComputers & Industrial Engineering, 2009, v. 57 n. 2, p. 608-619en_HK
dc.identifier.issn0360-8352en_HK
dc.identifier.urihttp://hdl.handle.net/10722/74486-
dc.description.abstractHidden Markov Models (HMMs) are widely used in applied sciences and engineering. The potential applications in manufacturing industries have not yet been fully explored. In this paper, we propose to apply HMM to detect machine failure in process control. We propose models for both cases of indistinguishable production units and distinguishable production units. Numerical examples are given to illustrate the effectiveness of the proposed models. © 2008 Elsevier Ltd. All rights reserved.en_HK
dc.languageengen_HK
dc.publisherPergamon. The Journal's web site is located at http://www.elsevier.com/locate/cieen_HK
dc.relation.ispartofComputers & Industrial Engineeringen_HK
dc.subjectHidden Markov Modelen_HK
dc.subjectMachine failureen_HK
dc.subjectStatistical control processen_HK
dc.subjectTransition probabilityen_HK
dc.titleDetection of machine failure: Hidden Markov Model approachen_HK
dc.typeArticleen_HK
dc.identifier.openurlhttp://library.hku.hk:4550/resserv?sid=HKU:IR&issn=0360-8352&volume=57&spage=608&epage=619&date=2009&atitle=Detection+of+Machine+Failure:+Hidden+Markov+Model+Approachen_HK
dc.identifier.emailChing, WK: wching@hku.hken_HK
dc.identifier.emailChan, LY: plychan@hku.hken_HK
dc.identifier.authorityChing, WK=rp00679en_HK
dc.identifier.authorityChan, LY=rp00093en_HK
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1016/j.cie.2008.09.028en_HK
dc.identifier.scopuseid_2-s2.0-68649097825en_HK
dc.identifier.hkuros162782en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-68649097825&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume57en_HK
dc.identifier.issue2en_HK
dc.identifier.spage608en_HK
dc.identifier.epage619en_HK
dc.identifier.isiWOS:000269765700014-
dc.publisher.placeUnited Kingdomen_HK
dc.identifier.scopusauthoridTai, AH=8901145000en_HK
dc.identifier.scopusauthoridChing, WK=13310265500en_HK
dc.identifier.scopusauthoridChan, LY=7403540482en_HK
dc.customcontrol.immutablecsl 140324-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats