File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Power system dynamic Security region and its approximations

TitlePower system dynamic Security region and its approximations
Authors
KeywordsDirect method
Dynamic security region (DSR)
Stability region
Transient stability
Issue Date2006
PublisherIEEE.
Citation
Ieee Transactions On Circuits And Systems I: Regular Papers, 2006, v. 53 n. 12, p. 2849-2859 How to Cite?
AbstractDynamic security region (DSR) for security assessment and preventive control is defined in terms of variables that are under the control of the dispatcher prior to a fault. The boundary of DSR can be expressed using the function describing the stable manifold of the controlling unstable equilibrium point. The function is shown to be the solution of a partial differential equation. Quadratic and linear approximations to the function characterizing the boundary of DSR are derived. Numerical tests of the approximations are conducted. Potential applications of the method are discussed. © 2006 IEEE.
Persistent Identifierhttp://hdl.handle.net/10722/74117
ISSN
2006 Impact Factor: 1.139
2006 SCImago Journal Rankings: 1.111
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorXue, Aen_HK
dc.contributor.authorWu, FFen_HK
dc.contributor.authorLu, Qen_HK
dc.contributor.authorMei, Sen_HK
dc.date.accessioned2010-09-06T06:57:58Z-
dc.date.available2010-09-06T06:57:58Z-
dc.date.issued2006en_HK
dc.identifier.citationIeee Transactions On Circuits And Systems I: Regular Papers, 2006, v. 53 n. 12, p. 2849-2859en_HK
dc.identifier.issn1057-7122en_HK
dc.identifier.urihttp://hdl.handle.net/10722/74117-
dc.description.abstractDynamic security region (DSR) for security assessment and preventive control is defined in terms of variables that are under the control of the dispatcher prior to a fault. The boundary of DSR can be expressed using the function describing the stable manifold of the controlling unstable equilibrium point. The function is shown to be the solution of a partial differential equation. Quadratic and linear approximations to the function characterizing the boundary of DSR are derived. Numerical tests of the approximations are conducted. Potential applications of the method are discussed. © 2006 IEEE.en_HK
dc.languageengen_HK
dc.publisherIEEE.en_HK
dc.relation.ispartofIEEE Transactions on Circuits and Systems I: Regular Papersen_HK
dc.subjectDirect methoden_HK
dc.subjectDynamic security region (DSR)en_HK
dc.subjectStability regionen_HK
dc.subjectTransient stabilityen_HK
dc.titlePower system dynamic Security region and its approximationsen_HK
dc.typeArticleen_HK
dc.identifier.emailWu, FF: ffwu@eee.hku.hken_HK
dc.identifier.authorityWu, FF=rp00194en_HK
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1109/TCSI.2006.883860en_HK
dc.identifier.scopuseid_2-s2.0-33845729008en_HK
dc.identifier.hkuros132719en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-33845729008&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume53en_HK
dc.identifier.issue12en_HK
dc.identifier.spage2849en_HK
dc.identifier.epage2859en_HK
dc.identifier.isiWOS:000242950400035-
dc.publisher.placeUnited Statesen_HK
dc.identifier.scopusauthoridXue, A=55401113300en_HK
dc.identifier.scopusauthoridWu, FF=7403465107en_HK
dc.identifier.scopusauthoridLu, Q=35513737300en_HK
dc.identifier.scopusauthoridMei, S=7102846252en_HK

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats